FAST HIGH VOLTAGE THYRISTOR SWITCHES

These solid-state switches are designed for high voltage high peak current switching applications such as shock wave generators, flash lamp drivers, crow bar circuits and surge generators. The switching modules contain a large number of reverse blocking thyristors (SCR) connected in series and in parallel. Each single thyristor is controlled by its own lowimpedance gate drive, which allows an extremely large di/dt without reduction of reliability and life expectancy.

The safe and synchronous control of all SCR's is performed by a patented driver which also provides the high galvanic isolation necessary for high-side circuits and safety-relevant applications.

In contrast to conventional high voltage switches like spark gaps, electron tubes, gas discharge tubes and mechanical switches, thyristor switches of the HTS-SCR series show very low jitter and stable switching characteristics independent of temperature and age. The mean time between failures (MTBF) is by several orders of magnitude higher than that of the classical HV switches.

An interference-proof control circuit provides signal conditioning, auxiliary voltage monitoring, frequency limitation and temperature protection. In case of false operating conditions the switches are immediately inhibited and a fault signal is generated. Three LED's indicate the operating state.

The switches are triggered by a positive going pulse of 3-6 Volts. The switching behaviour will not be influenced by the trigger rise time or the trigger amplitude. After being triggered the switches remain in on-state until the load current drops below the holding current (typical thyristor behaviour). Therefore the turn-off process requires a current commutation, a current limitation or a current bypass. Capacitor discharge applications with charging currents less than the holding current do not require special turn-off measures. In all other cases the switches can be turned off by a slight current reversal, which is given in most pulsed power applications anyway. If the current reversal is higher than 10% and if the periodic duration of the current is shorter than 1 ms , a free-wheeling diode (e.g. Behlke FDA) must be used to avoid hard turn-off, which can damage the switching module under certain circumstances. Please also compare the application note below. For further design recommen-dations please refer to the general instructions for use.

HTS 60-200-SCR

6 kVDC / 2 kA pk. HTS 120-100-SCR 12 kVDC / 1kA pk.

SCB
TECHNOLOGY

- Patented -

Compact Design
Extremely High di/dt High Surge Current Capability

Basic Circuits

Antiparallel Circuit using Option ST

An antiparallel circuit can simply be realized by use of the stage
tapping option ST (50\%). The tapping option ST (50\%). The divided into two identical switching divided into two identical switching paths and connected as shown Voltage will consequently be reduced to half the value.

Inductive Load

Note: D1 is a fast recovery diode with kiloamps peak current capability, e.g. Behlke FDA $640-x x x$ or FDA $800-x x x$

ORDERING INFORMATION

HTS 60-200-SCR
HTS 120-100-SCR

Option HFB

Option FC

Thyristor switch, 6 kVDC, $2 \mathrm{kA}(\mathrm{pk})$
Thyristor switch, 12kVDC, 1 kA (pk) High frequency burst
Flat case, 19 mm height

Option UL94 Flame retardend casting resin according to UL 94-V0
Option GCF Grounded Cooling Flange: The module can be attached directly to heat sinks without any insulation measure. Coupling capacitance wil be increased by approx. 150%.

