FAST HIGH VOLTAGE TRANSISTOR SWITCHES

The switching modules of the series HTS-GSM consist of two identical MOSFET switching paths, that form a so-called half bridge circuit respectively push-pull circuit. Both switching paths are controlled by a common driver, which also provides a logic signal negation for one of the switches. The switches are mutually passively locked, so that a short in the bridge is excluded under all circumstances, even then, if the control input is disturbed by electromagnetic interferences (due to bad EMC design, for example). Especially in pulse generator applications with capacitive load, the push-pull principle has considerable advantages in comparision with the conventional circuitry using a single-switch with working resistor. Push-pull circuits do not require large energy storage capacitors for a low pulse droop and, because there are no working resistor power losses, the efficiency of a push-pull pulser is excellent regardless to pulse width, frequency and duty cycle. The pulsers draw only currents for charging the connected load capacitance. Thanks to an extremely precise timing of the switches, there are also almost no cross currents in the bridge, except peak charging currents of the switch natural capacitances.

The switches are controlled by positive going signals of 3 to 10 Volts amplitude. Fault conditions as overfrequency, thermal overload (long-term overload) and incorrect auxilliary supply set the switching path A in off-state and the switching path B in onstate. Faults are indicated as a "L" signal at the fault signal output. Without 5VDC supply both switching paths (A and B) are in offstate. That means, without 5VDC the output potential could be undefined, if the HV is still applied. To ensure a defined high voltage output potential in such cases, pull-up or pull-down resistors must be connected to the output. For further design recommendations please refer to the general instructions.

HTS 41-06-GSM $2 \times 4 \mathrm{kV} / 60 \mathrm{~A}$ HTS 61-03-GSM 2x 6kV / 30 A

- Fast transition times, rise time and fall time $\sim 10 \mathrm{~ns}$
- Variable pulse width from 150 ns to infinity
- No pulse droop and very low ripple on the pulse top
- No working resistor power, small buffer capacitors

PUSH-PULL

MOSFIT
technologr

Basic Circuits

TECHNICAL DATA

Specification	Symbol	Condition / Comment					41-06-GSM	61-03-GSM	Unit
Maximum Operating Voltage	$\mathrm{V}_{\mathrm{O}(\text { max })}$	$\mathrm{I}_{\text {off }}<10 \mu$ ADC					2×4000	2×6000	VDC
Minimum Operating Voltage	$\mathrm{V}_{\mathrm{O} \text { (min) }}$	Increased transition times below $0.1 \times \mathrm{V}_{\mathrm{O}(\max)}$							VDC
Typical Breakdown Voltage	V_{br}	Static voltage, $\mathrm{I}_{\text {off }}>1 \mathrm{mADC}, \mathrm{T}_{\text {case }}=70^{\circ} \mathrm{C}$					2×4400	2×8000	VDC
Galvanic Isolation	V ,	Continuously	HV terninals at bottom (Standard) HV terminals at front (Opt.08A)				$\begin{aligned} & 20000 \\ & 40000 \end{aligned}$		VDC
Max. Peak Current Capability	$\mathrm{I}_{\mathrm{P} \text { (max) }}$	$\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$	$\mathrm{t}_{\mathrm{p}}<10 \mu \mathrm{~s}$, duty cycle $<1 \%$				2×60	2×30	ADC
Max. Continuous Load Current	I_{L}	$\begin{aligned} & \mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {fin }}=25^{\circ} \mathrm{C} \end{aligned}$	Standard plastic case Opt.03, incr. thermal conductivity Opt. 04, cooling fins (air $>4 \mathrm{~m} / \mathrm{s}$)				$\begin{aligned} & 2 \times 1.12 \\ & 2 \times 1.32 \\ & 2 \times 2.96 \end{aligned}$	$\begin{gathered} 2 \times 0.5 \\ 2 \times 0.59 \\ 2 \times 1.32 \end{gathered}$	ADC
Static On-Resistance	$\mathrm{R}_{\text {stat }}$	$\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 0.1 \times \mathrm{I}_{\mathrm{P}(\max)} \\ & 1.0 \times \mathrm{I}_{\mathrm{P}(\max)} \end{aligned}$				$\begin{gathered} 2 \times 3.6 \\ 2 \times 8 \end{gathered}$	$\begin{aligned} & 2 \times 16 \\ & 2 \times 40 \end{aligned}$	Ω
Maximum Off-State Current	$\mathrm{I}_{\text {off }}$	$0.8 \times \mathrm{V}_{\mathrm{O}}, \mathrm{T}_{\text {case }}=25 \ldots 70^{\circ} \mathrm{C}$, reduced $\mathrm{I}_{\text {off }}$ on request							$\mu \mathrm{ADC}$
Propagation Delay Time	t_{d}	Resistive Load					150		ns
Typical Output Transition Time (Rise Time \& Fall Time)	$\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	$0.8 \times \mathrm{V}_{\mathrm{O}}$ $\mathrm{R}_{\mathrm{S}}=33 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ $10-90 \%$ $\mathrm{R}_{\mathrm{S}}=33 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ Standard device $\mathrm{R}_{\mathrm{S}}=33 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Bottom terminals) $\mathrm{R}_{\mathrm{S}}=33 \Omega, C_{\mathrm{L}}=200 \mathrm{pF}$ $\mathrm{R}_{\mathrm{S}}=22 \Omega, C_{\mathrm{L}}=1000 \mathrm{pF}$					$\begin{gathered} 6 \\ 7 \\ 10 \\ 14 \\ 45 \end{gathered}$	$\begin{gathered} \hline 9 \\ 14 \\ 22 \\ 34 \\ 73 \end{gathered}$	ns
Minimum Output Pulse Width	$\mathrm{t}_{\mathrm{p} \text { (min) }}$	Reduced output pulse width on request.					150		ns
Maximum Output Pulse Width	$\mathrm{t}_{\mathrm{p} \text { (max) }}$						No limitation, up to ∞		
Minimum Pulse Spacing	$\mathrm{t}_{\mathrm{ps}(\text { min) }}$	(Switch recovery time)					400		ns
Typical Output Pulse Jitter	t_{j}	$\mathrm{V}_{\mathrm{aux}}=5.0 \mathrm{VDC}$ Fixed switching frequency, $>2 \mathrm{kHz}$ $\mathrm{V}_{\mathrm{tr}}=5.0 \mathrm{VDC}$ Sweeped frequency, <2kHz							ns
Max. Continuous Switching Frequency	$\mathrm{f}_{\text {(max) }}$	Please note possible $\mathrm{P}_{\mathrm{d}(\text { max })}$ limitations. Increased switching frequency on request.							kHz
Maximum Burst Frequency	$\mathrm{f}_{\mathrm{b} \text { (max) }}$	Use option 01 for >10 pulses per 20μ s burst					2.5		MHz
Maximum Continuous Power Dissipation	$\mathrm{P}_{\mathrm{d}(\text { max })}$	$\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {fin }}=25^{\circ} \mathrm{C}$ Standard plastic case Opt.03, incr. thermal conductivity Opt. 04, cooling fins (air $>4 \mathrm{~m} / \mathrm{s}$)					$\begin{aligned} & 2 \times 10 \\ & 2 \times 14 \\ & 2 \times 70 \end{aligned}$		Watts
Linear Derating		Above $25^{\circ} \mathrm{C}$ Standard plastic case Opt.03, incr. thermal conductivity Opt. 04, cooling fins (air $>4 \mathrm{~m} / \mathrm{s}$)					$\begin{aligned} & 2 \times 0.22 \\ & 2 \times 0.31 \\ & 2 \times 1.55 \end{aligned}$		W/K
Temperature Range	T_{0}						-40...70		${ }^{\circ} \mathrm{C}$
Typical Natural Capacitance	C_{N}	Capacitance between + and - $0.1 \times \mathrm{V}_{\mathrm{O}(\max)}$ terminal of one switch path $0.8 \times \mathrm{V}_{\mathrm{O}(\max)}$					$\begin{aligned} & <200 \\ & <70 \end{aligned}$		pF
Typical Coupling Capacitance	C_{c}	Both switches against ground respectively control							pF
Reverse Recovery Time of the intrinsic diodes (Parasitic MOSFET Diodes)	trrc	Note: The internal diodes are too slow to be used periodically in forward direction (danger of bridgeshort). Free-wheeling diode networks must be applied in case of inductive load or high stray inductance!				$\mathrm{I}_{\mathrm{F}}=2$			ns
Auxiliary Supply Voltage	$\mathrm{V}_{\text {aux }}$	Stabilized to $\pm 5 \%$							VDC
Auxiliary Supply Current	$\mathrm{I}_{\text {aux }}$	@f $\mathrm{m}_{\text {max }}$, (Limitation of approx. 1 A recommended)							mADC
Control Signal	V_{tr}	>3VDC recommended for low jitter							VDC
Fault Signal Output		Short circuit proof, source/sink current max. 10 mA Ready = High Fault = Low					$\begin{aligned} & \geq 4.0 \\ & \leq 0.8 \end{aligned}$		VDC
Dimensions	LxWxH	Standard plastic case (Without connectors) With option 04 (cooling fins)					$\begin{aligned} & 112 \times 64 \times 27 \\ & 112 \times 64 \times 62 \\ & \hline \end{aligned}$		mm^{3}
Weight		Standard plastic case With option 04 (cooling fins)							g

Ordering Information

HTS 41-06-GSM	Push-pull transistor switch	Option 05	High power metal case (on request only)
HTS 61-03-GSM	Push-pull transistor switch	Option 06	Control connection: Pins instead of pigtail \& plug
Option 01	High frequency burst	Option 08A*	40kV isolation, HV front terminals
Option 03	Increased thermal conductivity	Option 08B*	80kV isolation, HV front terminals, enlarged case
Option 04	Cooling fins, non isolated, for vertical air stream only		* Not recommended for switching speeds <15ns

