

© 2007 American High Voltage

www.ahv.com

ດັ လ

eries

Electrical Characteristics

(at 25 degrees C unless otherwise specified)

Parameter	Conditions		Value	───	Units
		Min	Typical	Max	
Supply Voltage*:		2 VDC	12VDC	18 VDC	VDC
Input Current:	No Load Full 1 Watt load	40 120	50 130	60 140	mA mA
Output Ripple:	No Load Full 1 Watt Load	0.7% 0.8%	0.7% 0.8%	1% 1%	Vpp Vpp
Load Regulation:	No Load to Full Load Half Load to Full Load	25% 20%	25% 20%	30% 30%	V _{NL} /VL VNL/V
Output Linearity	No Load		1%		ΔVουτ ΔVουτ
Output Linearity	Full 1 Watt Load		1%		ΔVουτ
Short Circuit Current:				200	mA
Power Efficiency:	Full Load		70%		Роит Рім
Reverse Input Polarity	Protected to 20 VDC				
Temperature Drift:	No Load Full Load			1,000 1,000	ppm/D ppm/D
Thermal Rise:	No Load (case) Full Load (case)			10 15	degree degree
Slew Rate (10% - 90%)	No Load Full Load			100 120	mS mS
Slew Rate (90% - 10%)	No Load Full Load			200 100	mS mS
Drain Out Time	No Load (5 TC)			150	mS
t Others instantion in				ļ	1
[^] Other input voltages av	ailable: 5VDC, 15VDC, 24VDC,	28VDC and 4	8VDC		

TC Series

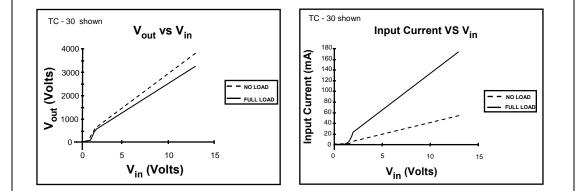
© 2007 American High Voltage

Physical Characteristics (at 25 degrees C unless otherwise specified)

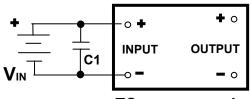
Parameter	Conditions	Value	Units
Dimensions	MKS English	25.4 W x 38.1 L x 12.7 H 1 W x 1.5 L x 0.5 H	mm
Volume:	MKS English	12.3 0.75	cm ³ inch ³
Mass:	MKS English	55 2	grams oz
Packaging:	Solid Epoxy Thermosetting		
Finish	Smooth Dial-Phthalate Case		
Terminations:	Gold Plated Brass pins (4)		

Environmental Characteristics

(at 25 degrees C unless otherwise specified)


Parameter	Conditions	Value	Units	
Temperature Range	case temperature case temperature	-40 degrees to + 71 degrees -40 degrees to + 160 degrees	Celsius Fahrenheit	
Shock:	MIL-STD-810 Method 516	40 g's	Proc IV	
Altitude:	pins sealed against corona pins sealed against corona	-350 to + 16,700 -1,000 to +55,000	meters feet	
Vibrations:	MIL-STD-810 Method 514	20 g's	Curve E	
Thermal Shock	MIL-STD-810 Method 504	-55 deg C to + 71 deg C	Class 2	

© 2007 American High Voltage


TC Series Performance Charts

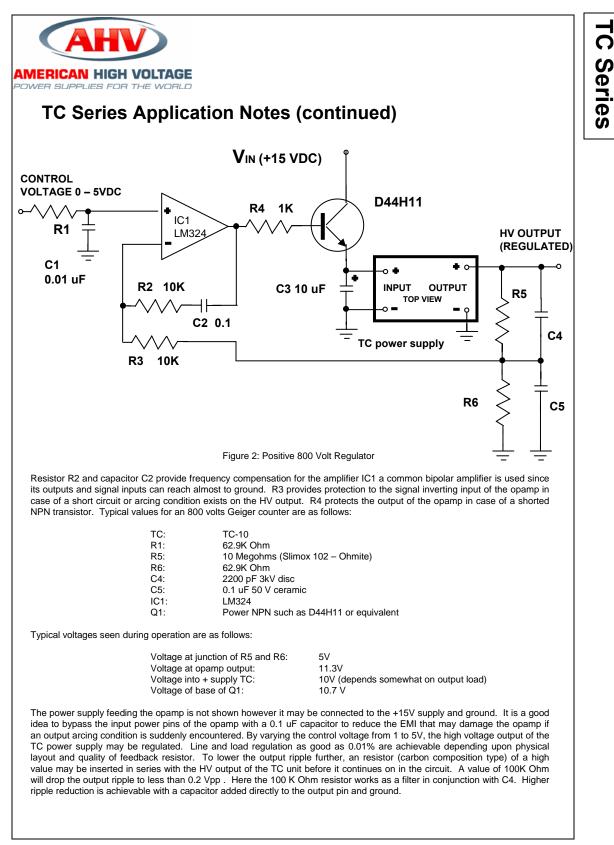
(at 25 degrees C unless otherwise specified)

TC Series Application Notes

The TC Series high voltage power supplies are driven by an input voltage of 2 to 12 VDC. The input current and output voltage as a function of input is shown in the above graphs. There are NO internal connections between the input and output pins. As can be seen from the above, the output voltage is approximately linear with respect to input except near the lower input voltage region. Here, the output drops off rapidly as the input voltage approaches zero with the absolute minimum input voltage needed for reliable starting being 0.9 VDC. As shown in Figure 1 below, the simple connection of a TC unit to a DC source of voltage will provide a high voltage stepped-up output. The input AC bypass capacitor C1 is optional and is utilized to prevent switching spikes from riding back on the input power lines. Values of 0.1 uF to 10 uF are commonly used.

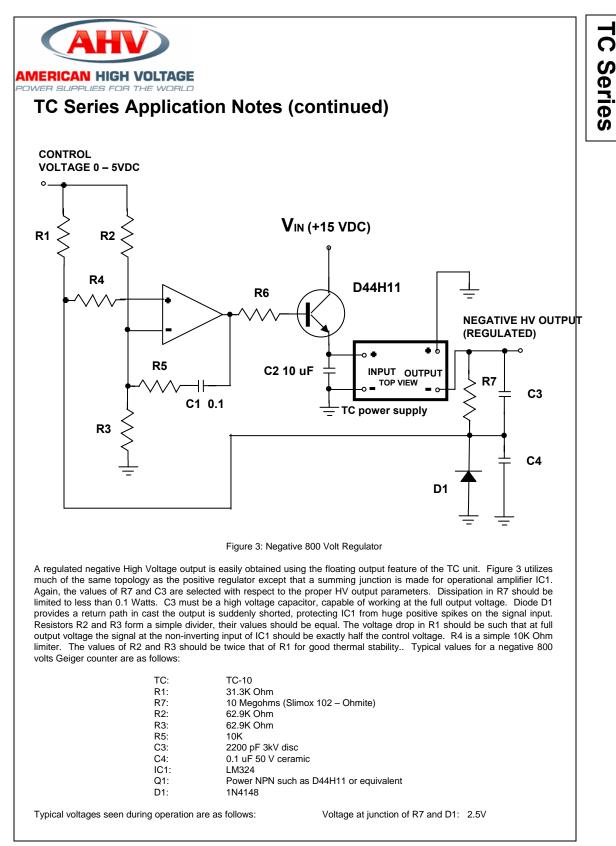
TC power supply

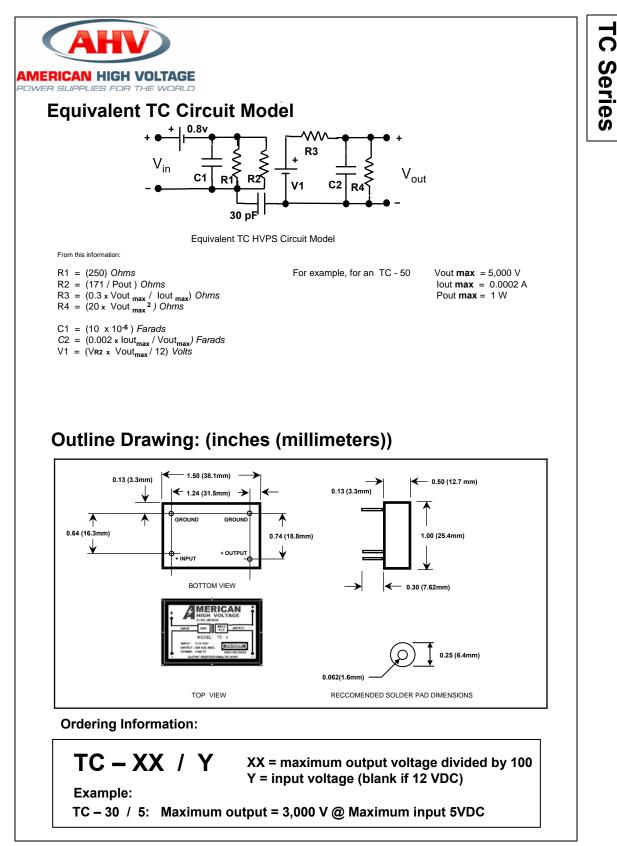
Figure 1: Basic TC hookup schematic (top view of TC shown)


The output voltage of the TC unit may be regulated by incorporating a simple op-amp circuit and linear control device such as an NPN transistor. Here, the output voltage is sensed and compared against an external reference control voltage. For single supply operation, the circuit of Figure 2 may be used for positive output regulation. A high voltage divider is made up of R5 and R6 to divide down the output to a value comparable with the control voltage. The resistor R5 is value is determined by power considerations. It cannot be lower in value such that it would dissipate 1 Watt since this is the maximum power output of the TC unit and nothing would be left over for the load. A good value to consider is a dissipation of 0.1 Watts since this provides a preload on the TC unit insuring greater loop stability. The resistor R5 must be rated for the voltage that it is to step down. Simple high value carbon film resistors are usually avoided because their maximum voltage is limited to 300 VDC. Precision metal film resistors are more stable but also have limiting maximum voltages. It is possible to series several metal film resistors to build up the voltage rating of R5. Capacitor C4 likewise must be rated for the proper voltage. It serves to lower output ripple provide a feed-forward pole in the feedback loop for stability. Capacitor C5, the ground mirror capacitor serves as a lower end of the AC divider formed with C4 and prevents excessive voltage from being fed to the operational amplifier in the case of a shorted output. R6 is selected by calculating the resistance divider ration with R5, providing a 5 volt feedback at full output voltage. The input reference bypass capacitor C1 is used to remove any noise feeding to the noninverting signal pin of the operational amplifier. For maximum temperature stability, R1 should be identical in value to R6.

© 2007 American High Voltage

www.ahv.com


S


eries

© 2007 American High Voltage

Page 5

