
- Includes coaxial types
- Up to 20 W switching
- Highest quality instrumentation grade switches
- 1 Form A, 2 Form A (energise to make), 1 Form B (energise to break), 1 Form C (changeover),
 1 Form A coaxial 50 or 75 Ω impedance (energise to make) configurations
- Mu-metal magnetically screened relays stacking on a **0.15** inches x **0.6** inches pitch.
- Insulation resistance >10¹² Ω
- Additional build options are available
- Many benefits compared to industry standard relays (see last page)
- Suitable for high density applications such as A.T.E. switching matrices

Mu-metal, due to its high permeability and low magnetic remanence is used to provide magnetic screening. This eliminates problems that would otherwise occur due to magnetic interaction. Interaction is usually measured as a percentage increase in the voltage required to operate a relay when two additional relays, stacked one each side, are themselves operated. An unscreened device mounted on this pitch would have an interaction figure of around 40 percent. Relays of this size without magnetic screening would therefore be totally unsuitable for applications where dense packing is required. Pickering Series 109 and 109RF have a typical interaction figure of 1 percent. Series 109P and 109PH have a typical figure of 3 percent. To learn more visit: pickeringrelay.com/magnetic-interaction

Switch Ratings - Dry Switches

1 Form A (energize to make) mu-metal	1 Form A Coaxial 50 Ω and 75 Ω (energize to make) mu-metal	1 Form A (energize to make) plastic package	1 Form B (energize to break) mu-metal	1 Form C (changeover) mu-metal	2 Form A (energize to make) mu-metal
20 W at 200 V	20 W at 200 V	20 W at 200 V	10 W at 200 V	2 W at 30 V	10 W at 200 V
15 W at 200 V	10 W at 200 V	15 W at 200 V			
10 W at 200 V		10 W at 200 V			

Series 109 switch ratings - contact ratings for each switch type

Switch No	Switch form	Power rating	Max. switch current	Max. carry current	Max. switching volts	Life expectancy ops typical (see Note ¹)	Operate time inc bounce (max)	Release time	Special features
1	А	20 W (*15 W)	1.0 A	1.2 A	200	10°	0.5 ms	0.2 ms	General purpose
2	A or B	10W	0.5 A	1.2 A	200	10 ⁹	0.5 ms	0.2 ms	Low level
3	С	2W	0.1 A	0.1 A	30	10 ⁷	0.75 ms	0.5 ms	Change over

Switch no.2 is particularly good for switching low currents and/or voltages. It is the ideal switch for A.T.E. systems where cold switching techniques are often used. Where higher power levels are involved, switch no.1 is more suitable.

Note¹: Life Expectancy

The life of a reed relay depends upon the switch load and end of life criteria. For example, for an 'end of life' contact resistance specification of 1 Ω , switching low loads (10 V at 10 mA resistive) or when 'cold' switching, typical life is approx 10 x 10 9 ops. At the maximum load (resistive), typical life is 1 x 10 7 ops. In the event of abusive conditions, e.g. high currents due to capacitive inrushes, this figure reduces considerably. Pickering will be pleased to perform life testing with any particular load condition.

Operating Voltages

Coil voltage - nominal	Must operate voltage - maximum at 25°C	Must release voltage - minimum at 25°C
3 V	2.25 V	0.3 V
5 V	3.75 V	0.5 V
12 V	9 V	1.2 V

Environmental Specification/Mechanical Characteristics

In the table below, the upper temperature limit can be extended to +125 °C if the coil drive voltage is increased to accommodate the resistance/temperature coefficient of the copper coil winding. This is approximately 0.4% per °C. This means that at 125 °C the coil drive voltage will need to be increased by approximately $40 \times 0.4 = 16\%$ to maintain the required magnetic drive level. Please contact sales@pickeringrelay.com for assistance.

Operating Temperature Range	-20 °C to +85 °C
Storage Temperature Range	-35 °C to +100 °C
Shock Resistance	50 g
Vibration Resistance (10 - 2000 Hz)	20 g
Soldering Temperature (max) (10 s max)	270°C
Washability (Proper drying process is recommended)	Fully Sealed

The technical information shown in this data sheet could contain inaccuracies or typographical errors. This information may be periodically changed or updated and these changes will be included in future versions of this data sheet.

For different values, latest specifications and product details, please contact you local Pickering sales office.

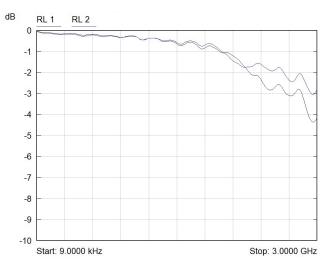
For FREE evaluation samples go to: pickeringrelay.com/samples

Dry Relay: Series 109 Coil data and type numbers

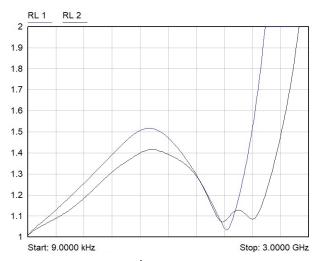
Device Type	Type Number	Coil	Coil	Max. contact	Insulation resistance (minimum)		Capacitance (typical) (see Note²)		
Device Type	туре мишрег	(V)	resistance	resistance (initial)	Switch to coil	Across switch	Closed switch to coil	Across open switch	
1 Form A, Switch No. 1	109-1-A-5/1D	5	500 Ω						
(*Note 15 W for 5L version)	109-1-A-5L/1D *	5	1000 Ω	0.15 Ω	$10^{12} \Omega$	10 ¹² Ω	2.5 pF	0.1 pF	
Package Type 1	109-1-A-12/1D	12	1000 Ω						
	109-1-A-3/2D	3	330 Ω						
1 Form A Switch No. 2	109-1-A-5/2D	5	500 Ω	0.12 Ω	10 ¹² Ω	10 ¹² Ω	2.5 pF	0.1 pF	
Package Type 1	109-1-A-5L/2D	5	1000 Ω	0.12 12	10 12	10 12	2.5 μι	0.1 pi	
	109-1-A-12/2D	12	1000 Ω						
1 Form B, Switch No. 2 Package Type 2	109-1-B-5/2D	5	750 Ω	0.12 Ω	10 ¹² Ω	10 ¹² Ω	2.5 pF	0.1 pF	
1 Form C, Switch No. 3	109-1-C-3/3D	3	100 Ω	0.05.0	1012 Ω	10¹¹ Ω	See Note ³	See	
Package Type 5	109-1-C-5/3D	5	150 Ω	0.25 Ω				Note ³	
2 Form A,	109-2-A-3/2D	3	200 Ω	0.14 Ω				0	
Switch No. 2	109-2-A-5/2D	5	375 Ω		$10^{12} \Omega$	10 ¹² Ω	See Note ³	See Note ³	
Package Type 3	109-2-A-12/2D	12	750 Ω				14010	11010	
50 Ω Coaxial, Switch No. 1	109RF50-1-A-5/1D	5	375 Ω	0.15.0	1012 Ω	10 ¹² Ω	2.5 pF	0.1 5	
Package Type 4	109RF50-1-A-12/1D	12	600 Ω	0.15 Ω				0.1 pF	
50 Ω Coaxial	109RF50-1-A-3/2D	3	200 Ω		1012 Ω	10 ¹² Ω	2.5 pF		
Switch No. 2	109RF50-1-A-5/2D	5	375 Ω	0.12 Ω				0.1 pF	
Package Type 4	109RF50-1-A-12/2D	12	600 Ω						
75 Ω Coaxial, Switch No. 1	109RF75-1-A-5/1D	5	375 Ω	0.15.0	10 ¹² Ω	10 ¹² Ω	0.5	0.1	
Package Type 4	109RF75-1-A-12/1D	12	600 Ω	0.15 Ω	10 11	1011	2.5 pF	0.1 pF	
75 Ω Coaxial, Switch No. 2	109RF75-1-A-5/2D	5	375 Ω	0.12 Ω	10 ¹² Ω	1012 0	25.5	0.1 5	
Package Type 4	109RF75-1-A-12/2D	12	600 Ω	0.1212	10 []	10 ¹² Ω	2.5 pF	0.1 pF	
1 Form A, Switch No. 1	109P-1-A-5/1D	5	500 Ω						
(*Note 15 W for 5L version)	109P-1-A-5L/1D *	5	1000 Ω	0.15 Ω	$10^{12} \Omega$	10 ¹² Ω	2.5 pF	0.1 pF	
Package Type 6	109P-1-A-12/1D	12	1000 Ω						
	109P-1-A-3/2D	3	250 Ω						
1 Form A Switch No. 2	109P-1-A-5/2D	5	500 Ω	0.12 Ω	1012 0	1012.0	25.5	01 55	
Package Type 6	109P-1-A-5L/2D	5	1000 Ω	0.1212	10 ¹² Ω	10 ¹² Ω	2.5 pF	0.1 pF	
. 25.1255	109P-1-A-12/2D	12	1000 Ω						

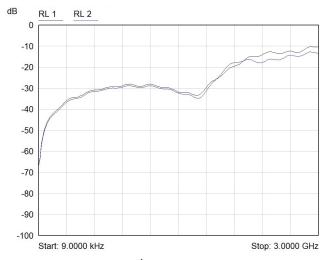
When an internal diode is required, the suffix D is added to the part number as shown in the table.

Note²: Capacitance across open switchs

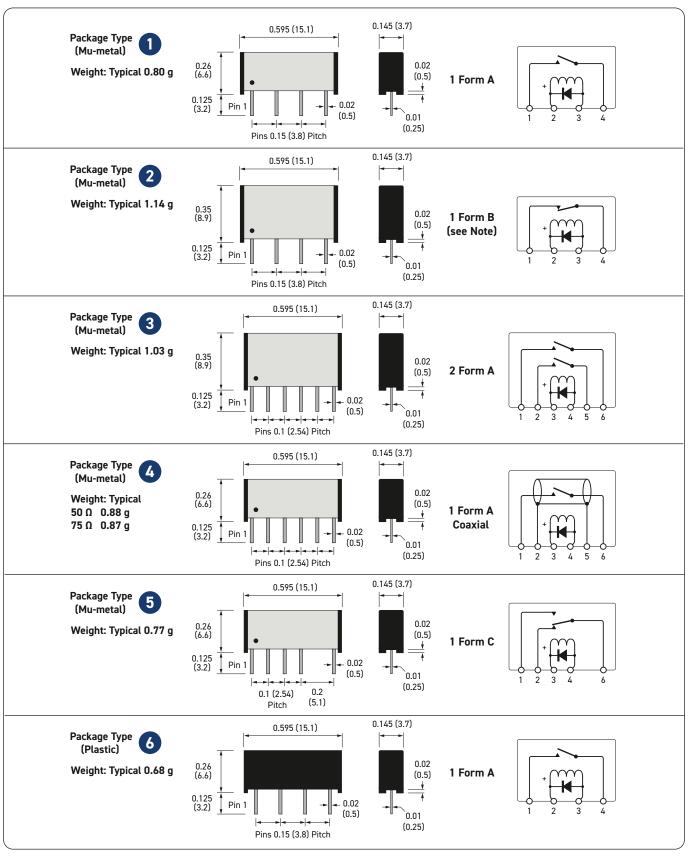

The capacitance across the open switch was measured with other connections guarded.

Note³: Capacitance values


The value will depend upon on the mode of connection/guarding of unused terminals. Please contact technical sales for details.


RF Plots for the 109RF50 Reed Relay

109RF50-1-A-5/2D RF Relay Insertion Loss Plots


109RF50-1-A-5/2D RF Relay VSWR Plots

109RF50-1-A-5/2D RF Relay Isolation Plots

Pin Configuration, Weights and Dimensional Data (dimensions in inches, millimeters in brackets)

Important: Where the optional internal diode is fitted or for all Form B types, the correct coil polarity must be observed, as shown by the + symbol on the schematics.

Similar Relays Comparison

If the Series 109 is unsuitable for your application, Pickering also manufactures two other series of reed relays with similar characteristics, but in different package sizes.

Series Name		109-1-A		109-1-B	109-1-C	109-2-A	109RF50-1-A 109RF75-1-A		109P-1-A				
Physical Outline	١	II "LE-LA IME ACCOM SOLATO	d	PROCEED RECEDENCE PROCEED RECEDENCE PROPERTY PRO	Programma progra	PROCESSO ESCHONGS CHARLES PROCESSO ESCHONGS CHARLES PROCESSO CONTROL AND ADDRESS OF THE PROCESSO CONTR							
Depth	(3.7 (0.145)	3.7 (0.145)	3.7 (0.145)	3.7 (0.145)		3.7 (0	0.145)			3.7 (0.145)	
Width (inches)	1	5.1 (0.595	5)	15.1 (0.595)	15.1 (0.595)	15.1 (0.595)		15.1 (0.595)		1	5.1 (0.595)
Height		6.6 (0.26)		8.9 (0.35)	6.6 (0.26)	8.9 (0.35)		6.6 (0.26)			6.6 (0.26)	
Package Volume (mm³)		1 369		2 498	5 369	3 498	4 369				6 369		
Typical Weights (g)		0.80		1.14	0.77	1.03	0.	88	0.	87	0.68		
Contact Configuration		1-A (SPST)		1-B (SPNC)	1-C (SPDT)	2-A (DPST)		SPST) Coaxial		SPST) Coaxial	1-A (SPST)		
Reed Switch Type	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Switching Voltage (V)	200	200	200	200	30	200	200	200	200	200	200	200	200
Switching Current (A)	1.0	1.0	0.5	0.5	0.1	0.5	1.0	0.5	1.0	0.5	1.0	1.0	0.5
Carry Current (A)	1.2	1.2	1.2	1.2	0.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Switch Power (W)	20	15	10	10	2	10	20	10	20	10	20	15	10

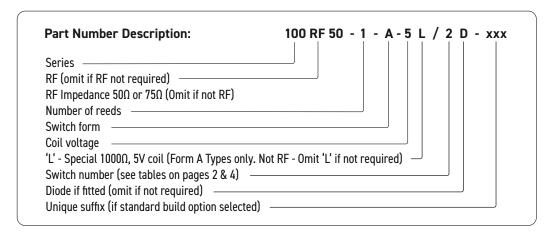
Series Name		113-	-1-A	113-1-C	113-2-A	111P-1-A	
Physical Outline							
Depth		3.7 (0).145)	3.7 (0.145)	3.7 (0.145)	3.7 (0.145)	
Width	mm (inches)	12.5 ((0.49)	12.5 (0.49)	12.5 (0.49)	10.0 (0.39)	
Height	(inches)	6.6 (0	0.26)	6.6 (0.26)	8.9 (0.35)	6.6 (0.26)	
	ge Volume mm³)	30	06	306	412	245	
Typical	Weights (g)	0.0	52	0.47	0.69	0.44	
_	ontact figuration	1- (SP	-A 'ST)	1-C (SPDT)	2-A (DPST)	1-A (SPST)	
Reed S	Switch Type	Dry	Dry	Dry	Dry	Dry	
Switch	ing Voltage (V)	200	200	30	200	170	
Switch	vitching Current (A) 0.5 0.5		0.5	0.1	0.5	0.5	
Carr	Carry Current 0.5 0.5		0.5	0.1 0.5		0.5	
Swit	ch Power (W)	10	10	2	10	10	

Reed Relay Selection Tool

Because Pickering offer the largest range of high-quality reed relays, sometimes it can be difficult to find the right reed relay you require. That is why we created the Reed Relay Selector, this tool will help you narrow down our offering to get you the correct reed relay for your application. To try the tool today go to: pickeringrelay.com/reed-relay-selector-tool

Standard Build Options

The Series 109 Reed Relays are available with a number of standard build options to tailor them to your specific application. These options are detailed in the table below. If you decide to go ahead and specify one, or more, of these options you will be allocated a unique part number suffix.


Mechanical Build Options	Electrical Build Options			
Special pin configurations or pin lengths	Different coil resistance			
Special print with customer's own part number or logo	Different stand-off or switching voltage			
Custom packaging possibility	Operate or de-operate time			
Equivalents to competitors discontinued parts	Pulse capability			
	Enhanced specifications			
	Equivalents to competitors discontinued parts Non-standard coil voltages and resistance figures			
	Special Life testing under customer's specific load conditions			
	Specific environmental requirements			
	Controlled thermal EMF possibility			

Customization

If your specific requirements are not met by standard relay, or any of the standard build options, please speak to us to discuss producing a customized reed relay to service your specific application: pickeringrelay.com/contact

3D Models

Interactive 3D models of the complete range of Pickering relay products in STEP, IGS and SLDPRT formats can be downloaded from the website: pickeringrelay.com/3d-models

Help

If you need any technical advice or other help, please do not hesitate to contact our Technical Sales Department. We will always be pleased to discuss Pickering relays with you. email: techsales@pickeringrelay.com

Contact Us

UK Headquarters - email: sales@pickeringrelay.com Tel. +44 1255 428141

USA - email: ussales@pickeringrelay.com | Tel. +1 781 897 1710

Germany - email: desales@pickeringtest.com | Tel. +49 89 125 953 160

France - email: frsales@pickeringtest.com | Tel. +33 9 72 58 77 00

Nordic - email: ndsales@pickeringtest.com | Tel. +46 340 69 06 69

Czech Republic: czsales@pickeringtest.com | Tel. +420 558-987-613

China - email: chinasales@pickeringtest.com | Tel. +86 4008 799 765

For a full list of agents, distributors and representatives visit: pickeringrelay.com/agents

10 Key Benefits of Pickering Reed Relays

		-	
Key Benefit	Pickering Reed Relays	Typical Industry Reed Relays	
Instrumentation Grade Reed Switches	Instrumentation Grade Reed Switches with vacuum sputtered Ruthenium plating to ensure stable, long life up to 5x10E9 operations.	Often low grade Reed Switches with electroplated Rhodium plating resulting in higher, less stable contact resistance.	
Formerless Coil Construction	Formerless coil construction increases the coil winding volume, maximizing magnetic efficiency, allowing the use of less sensitive reed switches resulting in optimal switching action and extended lifetime at operational extremes.	Use of bobbins decreases the coil winding volume, resulting in having less magnetic drive and a need to use more sensitive reed switches which are inherently less stable with greatly reduced restoring forces.	Pickering former-less coil Typical industry coil wound on bobbin
3 Magnetic Screening	Mu-metal magnetic screening (either external or internal), enables ultra-high PCB side-by-side packing densities with minimal magnetic interaction, saving significant cost and space. Pickering Mu-Metal magnetic screen - interaction approx. 5%	Lower cost reed relays have minimal or no magnetic screening, resulting in magnetic interaction issues causing changes in operating and release voltages, timing and contact resistance, causing switches to not operate at their nominal voltages. Typical industry screen - interaction approx. 30%	X-Ray of Pickering Mu-metal industry magnetic screen X-Ray of typical industry magnetic screen
4 <i>SoftCenter</i> ™ Technology	SoftCenter™ technology, provides maximum cushioned protection of the reed switch, minimising internal lifetime stresses and extending the working life and contact stability.	Rigid hard moulded reed relays result in significant stresses to the glass reed switch which can cause the switch blades to deflect or misalign leading to changes in the operating characteristics, contact resistance stability and operating lifetime.	Pickering soft center protection of the reed switch
5 100% Dynamic Testing	100% testing for all operating parameters including dynamic contact wave-shape analysis with full data scrutiny to maintain consistency.	Simple dc testing or just batch testing which may result in non-operational devices being supplied.	Dynamic Contact Resistance Test — Operate — Release
100% Inspection at Every Stage of Manufacturing	Inspection at every stage of manufacturing maintaining high levels of quality.	Often limited batch inspection.	
7 100% Thermal Cycling	Stress testing of the manufacturing processes, from -20°C to +85°C to -20°C, repeated 3 times.	Rarely included resulting in field failures.	+85°C
8 Flexible Manufacturing Process	Flexible manufacturing processes allow quick-turn manufacturing of small batches.	Mass production: Usually large batch sizes and with no quick-turn manufacturing.	FAST
© Custom Reed Relays	Our reed relays can be customized easily, e.g. special pin configurations, enhanced specifications, non-standard coil or resistance figures, special life testing, low capacitance, and more.	Limited ability to customize.	
Product Longevity	Pickering are committed to product longevity, our reed relays are manufactured and supported for more than 25 years from introduction, typically much longer.	Most other manufacturers discontinue parts when they reach a low sales threshold; costing purchasing and R&D a great deal of unnecessary time and money to redesign and maintain supply.	Product 25+Years Longevity

For more information go to: pickeringrelay.com/10-key-benefits

