- 1 Form A, 2 Form A, 1 Form B, 1 Form C, & 1 Form A coaxial
- Stacking on 5 mm x 5 mm pitch allowing the highest packing density currently available for a dual pole relay
- 3, 5 or 12 V coils with internal diode
- Switching up to 1 A, 20 W
- Mu-metal magnetic screening
- Sputtered ruthenium instrumentation grade switch
- Insulation resistance > 10¹² Ω
- Additional build options are available
- Many benefits compared to industry standard relays (see last page)

The Series 125 reed relay range require a board area of only 5 mm x 5 mm making them ideal for very high packing density applications such as A.T.E. switching matrices or multiplexers.

Three switch types are available. A general purpose sputtered ruthenium switch rated at 15 W, 1A (3 & 5 V versions) or 20 W, 1A (12 V versions), a low level sputtered ruthenium switch rated at 10 W, 0.5 A, and a Rhodium changeover switch rated at 2 W, 0.1 A.

Mu-metal, due to its high permeability and low magnetic remanence is used to provide magnetic screening. This eliminates problems that would otherwise occur due to magnetic interaction. Interaction is usually measured as a percentage increase in the voltage required to operate a relay when two additional relays, stacked one each side, are themselves operated. An unscreened device mounted on this pitch would have an interaction figure of around 40%. Relays of this size without magnetic screening would therefore be totally unsuitable for applications where dense packing is required. Pickering Series 125 relays have a typical interaction figure of 1%.

Examples of Packing Density

Pickering Electronics' Series 120/122/124

Pickering Electronics' Series 125

Industry standard reed relay of the same electrical specification

The above graphic shows the relative packing density of some high density reed relays.

Sixteen (SPST) Series 120/122/124 (4mm²) relays, nine (DPST) Series 125 (5mm²) relays, and four industry standard reed relays can be fitted into the same area.

A total of 288 Series 125 relays on a Pickering Interfaces PXI BRIC daughter card illustrates the packing density of these extremely small Reed Relays.

pickering

Issue 1.3 November 2025

Switch Ratings - Dry Switches

1 Form A (energize to make)	1 Form B (energize to break)
20 W at 200 V (1kV Switch to Coil Standoff) 10 W at 200 V (1kV Switch to Coil Standoff)	15 W at 200 V (1kV Switch to Coil Standoff) 10 W at 200 V (1kV Switch to Coil Standoff)
1 Form C (energize to make)	2 Form A (energize to make)
2 W at 200 V (1 kV Switch to Coil Standoff)	20 W at 200 V (1kV Switch to Coil Standoff) 15 W at 200 V (1kV Switch to Coil Standoff) 10 W at 200 V (1kV Switch to Coil Standoff)

Series 125 switch ratings - contact ratings for each switch type

Switch No	Switch form	Power rating	Max. switch current	Max. carry current	Max. switching volts	Life expectancy ops typical (see Note ¹)	Operate time inc bounce (max)	Release time	Special features
1	A & B	20 W (*15 W)	1.0 A	1.2 A	200	10 ⁹	0.5 ms	0.2 ms	General purpose
2	A & B	10 W	0.5 A	1.2 A	200	10 ⁹	0.5 ms	0.2 ms	Low level
3	С	2 W	0.1 A	0.1 A	30	10 ⁷	0.75 ms	0.2 ms	Change over

Note¹: Life Expectancy - Relay life depends upon switch load and end of life criteria. For an end of life contact resistance specification of 1Ω , switching low loads (10 V at 10 mA resistive) or when 'cold' switching, typical life is approx 1×10^9 ops. At the maximum load (resistive), typical life is 1×10^7 ops. In abusive conditions (e.g. high capacitive inrush current) this figure reduces considerably. Pickering can perform life testing with any load conditions.

Switch no.2 is particularly good for switching low currents and/or voltages. It is the ideal switch for A.T.E. systems where cold switching techniques are often used. Where higher power levels are involved, switch no.1 is more suitable.

Operating Voltages

Coil voltage - nominal	Must operate voltage - maximum at 25°C	Must release voltage - minimum at 25°C
3 V	2.25 V	0.3 V
5 V	3.75 V	0.5 V
12 V	9.0 V	1.2 V

Environmental Specification/Mechanical Characteristics

In the table below, the upper temperature limit can be extended to ± 125 °C if the coil drive voltage is increased to accommodate the resistance/temperature coefficient of the copper coil winding. This is approximately 0.4% per °C. This means that at 125 °C the coil drive voltage will need to be increased by approximately $40 \times 0.4 = 16\%$ to maintain the required magnetic drive level. Please contact sales@pickeringrelay.com for assistance.

Operating Temperature Range	-20 °C to +85 °C
Storage Temperature Range	-35 °C to +100 °C
Shock Resistance	50 g
Vibration Resistance (10 - 2000 Hz)	20 g
Soldering Temperature (max) (10 s max)	270 °C
Washability (Proper drying process is recommended)	Fully Sealed

Washing Guidelines

Pickering do not make any specific recommendations on washing reed relays, due to the large number of factors in cleaning processes, however we do have suggestions on best practices. Click here for more information.

Specification Series 125

Dry Relay: Series 125 Coil data and type numbers

Device Type	Type Number	Coil (V)	Coil resistance	Max. contact resistance	Insulation resistance (minimum at 25°C) (see Note ⁴)		Capacitance (typical) (see Note ^{2, 3})	
				(initial)	Switch to coil	Across switch	Closed switch to coil	Across open switch
1 Form A	-	-	-					
Switch No. 1 (20 W)	125-1-A-5/1D	5	500 Ω	0.18 Ω	10 ¹² Ω	10 ¹² Ω	2.9pF	0.14pF
Package Type 1	125-1-A-12/1D‡	12	1000 Ω					
1 Form A RF	-	-	-				2.9pF	
Switch No. 1 (20 W)	125RF-1-A-5/1D	5	375 Ω	0.18 Ω	10 ¹² Ω	10 ¹² Ω		0.14pF
Package Type 1	125RF-1-A-12/1D‡	12	600 Ω					
2 Form A, Switch No. 1 (20 W)	-	-	-				See Note ³	See Note ³
(*Note 15 W for 3 & 5 V coils)	125-2-A-5/1D *	5	250 Ω	0.18 Ω	1012 Ω	10 ¹² Ω		
Package Type 2	125-2-A-12/1D ‡	12	750 Ω				Note	Note
1 Form B	-	-	-		10¹² Ω	10 ¹² Ω	2.9pF	0.14pF
Switch No. 1 (15 W)	125-1-B-5/1D	5	750 Ω	0.18 Ω				
Package Type 2	-	_	-					
1 Form A	125-1-A-3/2D	3	330 Ω		10 ¹² Ω	10 ¹² Ω	2.9pF	0.14pF
Switch No. 2 (10 W)	125-1-A-5/2D	5	500 Ω	0.18 Ω				
Package Type 1	125-1-A-12/2D‡	12	1000 Ω					
1 Form A RF	125RF-1-A-3/2D	3	200 Ω					0.14pF
Switch No. 2 (10 W)	125RF-1-A-5/2D	5	375 Ω	0.18 Ω	10 ¹² Ω	10 ¹² Ω	2.9pF	
Package Type 1	125RF-1-A-12/2D‡	12	600 Ω					
2 Form A	125-2-A-3/2D	3	150 Ω					_
Switch No. 2 (10 W)	125-2-A-5/2D	5	375 Ω	0.18 Ω	10 ¹² Ω	10 ¹² Ω	See Note ³	See Note ³
Package Type 2	125-2-A-12/2D‡	12	750 Ω				11010	Note
1 Form B	-	-	-					0.14pF
Switch No. 2 (10 W)	125-1-B-5/2D	5	750 Ω	0.18 Ω	10 ¹² Ω	1012 Ω	2.9pF	
Package Type 2	-	-	-					
1 Form C	125-1-C-3/3D	3	100 Ω					
Switch No. 3 (2 W)	125-1-C-5/3D	5	150 Ω	0.25 Ω	10 ¹² Ω	10¹¹ Ω	See Note ³	See Note ³
Package Type 1	-	-	-				INOTE	11010

[‡] See Note⁵ next page.

Note²: Capacitance across open switch

The capacitance across the open switch was measured with other connections guarded.

Note³: Capacitance values

The value will depend upon on the mode of connection/guarding of unused terminals. Please contact technical sales for details.

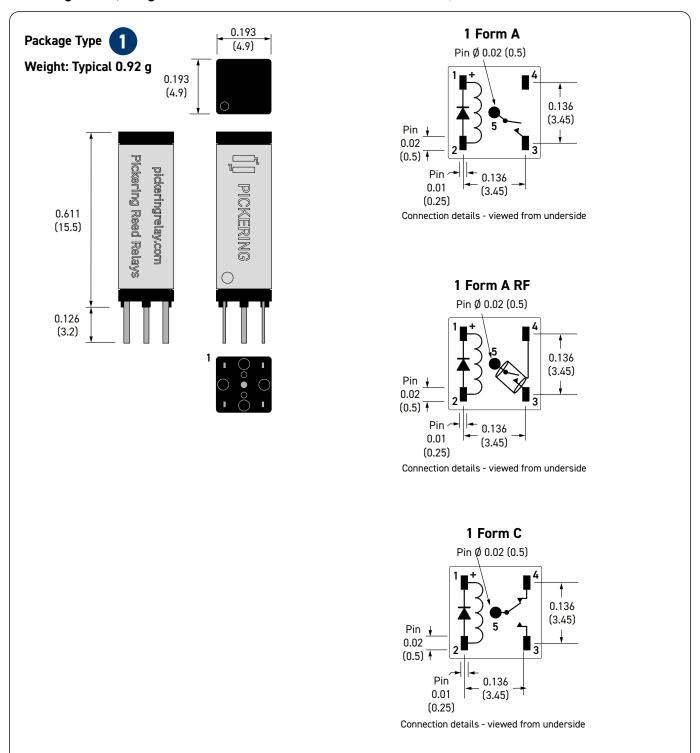
Note⁴: Insulation resistance

Insulation resistance will reduce at higher temperatures. For more information on temperature effects **click here**, or **contact Pickering** for more in depth guidance.

Note5: 12 volt coil versions

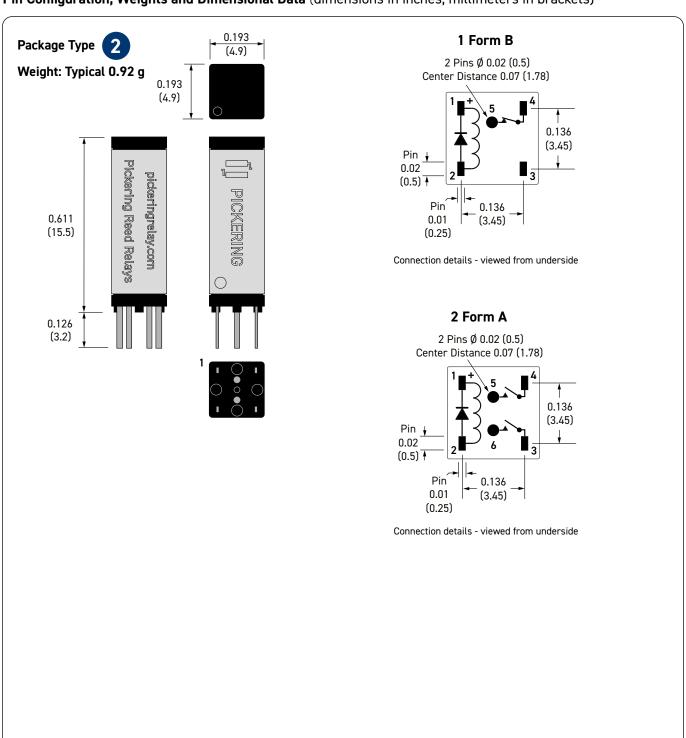
With limited room inside small packages, it is not possible to achieve the high coil resistance figures that would be preferred, without using extremely fine wire gauges. If these ultra-fine gauges were used, there would be a resultant risk of poorer reliability due to the delicate nature of such wire. Reliability is of paramount importance to Pickering, so ultra fine gauges are avoided. The heating effect from the coil (V^2/R) will therefore be higher than for the 3 or 5 V versions. For example:

3 V type: 200 Ω = 45 mW **5 V type:** 375 Ω = 60 mW **12 V type:** 750 Ω = 192 mW


12 V versions are suitable for applications such as Multiplexers or Matrices where they are operated on a low duty cycle but consideration should be made where they are left operated for longer due to this heating effect.

The technical information shown in this data sheet could contain inaccuracies or typographical errors. This information may be periodically changed or updated and these changes will be included in future versions of this data sheet.

For different values, latest specifications and product details, please contact your local Pickering sales office.


For FREE evaluation samples go to: pickeringrelay.com/samples

Pin Configuration, Weights and Dimensional Data (dimensions in inches, millimeters in brackets)

Important: The correct coil polarity must be observed, as shown by the + symbol on the schematic.

Pin Configuration, Weights and Dimensional Data (dimensions in inches, millimeters in brackets)

Important: The correct coil polarity must be observed, as shown by the + symbol on the schematic.

Similar Relays Comparison

If the Series 125 is unsuitable for your application, Pickering also manufactures four other series of double pole reed relays with similar characteristics, but in different package sizes.

Ser	Series Name 117-2-A		116	-2-A	115	109-2-A		
Physical Outline			17 T					
Depth		3.7 (0.145)	3.7 (0).145)	3.7 (0).145)	3.7 (0.145)	
Width	mm (inches)	9.9 (0.39)	9.9 (0.39)	9.9 (0.39)		15.1 (0.595)	
Height	(IIICHES)	9.52 (0.375)	12.45 (0.49)		15.5 (0.61)		8.9 (0.35)	
Pack	Package Volume (mm³) 349		45	56	568		498	
Typica	l Weights (g)	0.64	0.'	76	0.	1.03		
	Contact 2-A Configuration (DPST)		2-A (DPST)		2-A (DPST)		2-A (DPST)	
Reed	Reed Switch Type Dry		Dry		Dry		Dry	
Switchi	ng Voltage (V)	170	200	200	200	200	200	
Switchi	Switching Current (A) 0.5		1.0	0.5	1.0	0.5	0.5	
Carry	Current (A)	0.5	1.0	0.5	1.2	1.2	1.2	
Switc	h Power (W)	10	20 (15)	10	15	10	10	

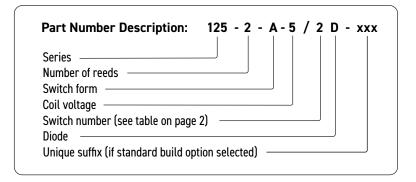
Series Name	Series Name 125-1-A		125RF-1-A		125-1-B		125-1-C	125	-2-A
Physical Outline	The persons and the persons are the persons and the persons are the persons ar		The second secon					The second secon	
Depth	4.9 (0).193)	4.9 (0	.193)	4.9 (0.193)		4.9 (0.193)	4.9 (0.193)	
Width (inches)	4.9 (0.193)		4.9 (0.193)		4.9 (0.193)		4.9 (0.193)	4.9 (0.193)	
Height	15.5 (0.611)		15.5 (0.611)		15.5 (0.611)		15.5 (0.611)	15.5 (0.611)	
Package Volume (mm ³)	0		1 372		2 372		0	2	
		372 0.92					372	372	
Typical Weights (g)			0.92			92	0.92	0.92	
Contact Configuration	Contact 1-A Configuration (SPST)		1-A (SPST)		1-A (SPST)		1-C (SPDT)		-A PST)
Reed Switch Type	Reed Switch Type Dry		Dry		Dry		Dry	D	ry
Switching Voltage (V)	200	200	200	200	200	200	30	200	200
Switching Current (A)	1.0	0.5	1.0	0.5	1.0	0.5	0.1	1.0	0.5
Carry Current (A)	1.2	1.2	1.2	1.2	1.2	1.2	0.1	1.2	1.2
Switch Power (W)	20	10	20	10	15	10	2	20 (15)	10

Reed Relay Selection Tool

Because Pickering offer the largest range of high-quality reed relays, sometimes it can be difficult to find the right reed relay you require. That is why we created the Reed Relay Selector, this tool will help you narrow down our offering to get you the correct reed relay for your application. To try the tool today go to: pickeringrelay.com/reed-relay-selector-tool

Standard Build Options

The Series 125 Reed Relays are available with a number of standard build options to tailor them to your specific application. These options are detailed in the table below. If you decide to go ahead and specify one, or more, of these options you will be allocated a unique part number suffix.


Mechanical Build Options	Electrical Build Options
Special pin configurations or pin lengths	Different coil resistance
Special print with customer's own part number or logo	Optional Internal Diode
	Operate or de-operate time
	Pulse capability
	Enhanced specifications
	Non-standard coil voltages and resistance figures
	Special Life testing under customer's specific load conditions
	Specific environmental requirements
	Controlled thermal EMF possibility

Customization

If your specific requirements are not met by standard relay, or any of the standard build options, please speak to us to discuss producing a customized reed relay to service your specific application: pickeringrelay.com/contact

3D Models

Interactive 3D models of the complete range of Pickering relay products in STEP, IGS and SLDPRT formats can be downloaded from the website: pickeringrelay.com/3d-models

Help

If you need any technical advice or other help, please do not hesitate to contact our Technical Sales Department. We will always be pleased to discuss Pickering relays with you. email: techsales@pickeringrelay.com

ColRact Us

UKONGACCH AND TECHNICAL Sales@pickeringrelay.com POTROT PASTATES TO SALES DEPARTMENT. We will always be all ussales@pickeringrelay.com PSTELL USSALES@pickeringrelay.com PSTELL

Germany - email: desales@pickeringtest.com | Tel. +49 89 125 953 160

France - email: frsales@pickeringtest.com | Tel. +33 9 72 58 77 00

Nordic - email: ndsales@pickeringtest.com | Tel. +46 340 69 06 69 Czech Republic: czsales@pickeringtest.com | Tel. +420 558-987-613

China - email: chinasales@pickeringtest.com | Tel. +86 4008 799 765

For a full list of agents, distributors and representatives visit: pickeringrelay.com/agents

Key Benefit	Pickering Reed Relays	Typical Industry Reed Relays	
Instrumentation Grade Reed Switches	Instrumentation Grade Reed Switches with vacuum sputtered Ruthenium plating to ensure stable, long life up to 5x10E9 operations.	Often low grade Reed Switches with electroplated Rhodium plating resulting in higher, less stable contact resistance.	a second
Formerless Coil Construction	Formerless coil construction increases the coil winding volume, maximizing magnetic efficiency, allowing the use of less sensitive reed switches resulting in optimal switching action and extended lifetime at operational extremes.	Use of bobbins decreases the coil winding volume, resulting in having less magnetic drive and a need to use more sensitive reed switches which are inherently less stable with greatly reduced restoring forces.	Pickering former-less coil Typical industry coil wound on bobbin
3 Magnetic Screening	Mu-metal magnetic screening (either external or internal), enables ultra-high PCB side-by-side packing densities with minimal magnetic interaction, saving significant cost and space. Pickering Mu-Metal magnetic screen - interaction approx. 5%	Lower cost reed relays have minimal or no magnetic screening, resulting in magnetic interaction issues causing changes in operating and release voltages, timing and contact resistance, causing switches to not operate at their nominal voltages. Typical industry screen - interaction approx. 30%	X-Ray of Pickering X-Ray of typical industry magnetic screen magnetic screen
4 SoftCenter™ Technology	SoftCenter TM technology, provides maximum cushioned protection of the reed switch, minimising internal lifetime stresses and extending the working life and contact stability.	Transfer moulded reed relays (produced using high temperature/pressure), result in significant stresses to the glass reed switch which can cause the switch blades to deflect or misalign leading to changes in the operating characteristics, contact resistance stability and operating lifetime.	Pickering soft center protection of the reed switch Typical industry thermo-setting hard moulded protection of the reed switch
5 100% Dynamic Testing	100% testing for all operating parameters including dynamic contact wave-shape analysis with full data scrutiny to maintain consistency.	Simple DC testing or just batch testing which may result in non-operational devices being supplied.	Dynamic Contact Resistance Test — Operate — Release B Coil Voltage
6 100% Inspection at Every Stage of Manufacturing	Inspection at every stage of manufacturing maintaining high levels of quality.	Often limited batch inspection.	
7 100% Thermal Cycling	Stress testing of the manufacturing processes, from -20 °C to +85 °C to -20 °C, repeated 3 times.	Rarely included resulting in field failures.	+85°C
8 Flexible Manufacturing Process	Flexible manufacturing processes allow quick- turn manufacturing of small batches.	Mass production: Usually large batch sizes and with no quick-turn manufacturing.	FASI
© Custom Reed Relays	Our reed relays can be customized easily, e.g. special pin configurations, enhanced specifications, non-standard coil or resistance figures, special life testing, low capacitance, and more.	Limited ability to customize.	
Product Longevity	Pickering are committed to product longevity; our reed relays are manufactured and supported for more than 25 years from introduction, typically much longer.	Most other manufacturers discontinue parts when they reach a low sales threshold; costing purchasing and R&D a great deal of unnecessary time and money to redesign and maintain supply.	PRODU 25+Years CONCEVICY

For more information go to: pickeringrelay.com/10-key-benefits