HIGH-SHOCK, HIGH-PERFORMANCE TO-5 RELAY DPDT

SERIES	
412 K	DPDTAY TYPE
422 K	DPDT High-Shock, Non-Latching Relay

DESCRIPTION

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for highdensity PC board mounting, its small size and low coil power dissipation make the TO-5 relay one of the most versatile subminiature relays available.

The K Series high-shock TO-5 relays are designed to withstand shock levels up to 4000 g's, .5 millisecond duration. Special material selection and construction details provide assurance that critical elements of the relay structure and mechanism will not be permanently displaced or damaged as a result of extremely high g level shocks.

Typical applications:

- Commercial avionics aircraft control
- Commercial aircraft control systems
- Transportation systems (rail/truck)

By virtue of their inherently low intercontact capacitance and contact circuit losses, the K Series relays have proven to be excellent subminiature RF switches for applications with frequency ranges well into the UHF spectrum. A typical RF application for the TO-5 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of TR switching.

INTERNAL CONSTRUCTION OF 412K

PRINCIPLE OF OPERATION 422K

Energizing Coil B produces a magnetic field opposing the holding flux of the permanent magnet in Circuit B. As this net holding force decreases, the attractive force in the air gap of circuit A , which also results from the flux of the permanent magnet, becomes great enough to break the armature free of Core B, and snap it into a closed position against Core A. The armature
 then remains in this position upon removal of power from Coil B, but will snap back to position B upon energizing Coil A. since operation depends upon cancellation of a magnetic field, it is necessary to apply the correct polarity to the relay coils as indicated on the relay schematic. When latching relays are installed in equipment, the latch and reset coils should not be pulsed simultaneously. Coils should not be pulsed with less than rated coil voltage and the pulse width should be a
minimum of three times the specified operate time of the relay. If these conditions are not followed it is possible for the relay to be in the magnetically neutral position.

ENVIRONMENTAL AND PHYSICAL SPECIFICATIONS

412 K	
Temperature (Ambient)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vibration (Note 1)	Operating (Note 1)
	30 g 's 10 to 3000 Hz
Survival Only	45 g 's, 6 ms half sine plane, half-sine $1000 \mathrm{g's}$, 0.5 ms side planes, half-sine
Acceleration	50 g 's
Enclosure	Hermetically sealed
Weight	0.09 oz. (2.55g) max.

422 K		
Temperature (Ambient)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Vibration (Note 1)	Operating (Note 1)	100 g g's 10 to 3000 Hz 6 ms half sine
Shock	Survival Only	2100 g's, 0.5 msec. axial plane, half-sine 750 g's, 0.5 msec side planes, half-sine
Acceleration	50 g's	
Enclosure	Hermetically sealed	
Weight	0.09 oz. $(2.55 \mathrm{~g})$ max.	

GENERAL ELECTRICAL SPECIFICATIONS $\left(-65^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted)(Notes $\left.2 \& 3\right)$

Contact Arrangement		2 Form C (DPDT)		
Contact Resistance Measured $1 / 8$ " below header	412K	High Level: 0.1Ω maximum before life; 0.2Ω max. after life at $1 \mathrm{~A} / 28 \mathrm{Vdc}$		
	422K	0.125Ω ma	efore	life;
Contact Load Rating (DC) (See Fig. 2 for other DC resistive voltage/current ratings)		Resistive: Inductive: Lamp: Low Level:	$\begin{gathered} 1 A \\ 20 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & 28 \mathrm{Vd} \\ & \mathrm{~mA} / 2 \\ & \mathrm{~mA} / 2 \\ & \text { to } 50 \end{aligned}$
Contact Load Rating (AC)		Resistive:		$\begin{aligned} & \mathrm{nA} / 11 \\ & \mathrm{nA} / 1 \end{aligned}$
Contact Bounce		3.0 ms maximum		
Contact Life Ratings		10,000,000 cycles (typical) at low level $1,000,000$ cycles at $0.5 \mathrm{~A} / 28 \mathrm{Vdc}$ resistive 100,000 cycles min. at all other loads specified above		
Contact Overload Rating		2A/28Vdc Resistive (100 cycles min.)		
Contact Carry Rating		Contact Factory		
Coil Operating Power	412K	500mW typ. @ $25^{\circ} \mathrm{C}$		
	422K	290mW typ. @ $25^{\circ} \mathrm{C}$		
Operate Time	412K	2.0 ms max.		
	422K	1.5 ms max .		
Release Time		1.5 ms max.		
Intercontact Capacitance		0.4 pf typical		
Insulation Resistance		10,000 $\mathrm{M} \Omega$ minimum, between mutually isolated terminals		
Dielectric Strength		$\begin{array}{ll}\text { Atmospheric pressure: } & 500(\mathrm{Vrms} / 60 \mathrm{~Hz}) \\ 70,000 \mathrm{ft.:} & 125(\mathrm{Vrms} / 60 \mathrm{~Hz})\end{array}$		
Minimum Operate Pulse	422K	4.5 ms widt	d vo	

DETAILED ELECTRICAL SPECIFICATIONS $\left(-65^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted) (Note 3)

BASE PART NUMBERS (See full P/N example)			412K-5	412K-12	412K-26
Coil Voltage, Nominal (Vdc)	Nom. Max.		$\begin{aligned} & 5.0 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 26.5 \\ & 32.0 \end{aligned}$
412K Coil Resistance (Ohms $\pm 10 \%, 25^{\circ} \mathrm{C}$)	412K		50	300	1350
422K Coil Resistance (Ohms $\pm 10 \%, 25^{\circ} \mathrm{C}$)	422K		61	500	2000
Pick-up Voltage (Vdc, Max.)	412K		4.3	10.0	21.0
Drop-out Voltage (Vdc)	412K	Min.	0.14	0.41	0.89
Set \& Reset Voltage (Vdc)	422K	Max	3.5	9.0	18.0

Part Numbering System (Notes 4 \& 5)

Notes

1. Relay contacts will exhibit no chatter in excess of $10 \mu \mathrm{sec}$ or transfer in excess of $1 \mu \mathrm{sec}$.
2. "Typical" characteristics are based on available data and are best estimates. No on-going verification tests are performed.
3. Unless otherwise specified, parameters are initial values.
4. Unless otherwise specified, relays will be supplied with gold-plated leads.
5. The slash and characters appearing after the slash are not marked on the relay.
6. Screened HI-REL versions available. Contact factory.

Figure 1

Figure 2

OUTLINE DIMENSIONS
TERMINAL LOCATIONS AND PIN NUMBERS (REF. ONLY)
(Viewed from Terminals)

DIMENSIONS ARE SHOWN IN INCHES (MILLIMETERS)

SCHEMATIC DIAGRAMS

Coil B

Coil A
Coil

SCHEMATICS ARE VIEWED FROM TERMINALS

APPENDIX: Spacer Pads

Notes:

1. Spreader pad material: Diallyl Phthalate.
2. To specify an "M" spreader pad, refer to the mounting variants portion of the part number example in the applicable datasheet.
3. Dimensions are in inches (mm).
4. Unless otherwise specified, tolerance is $\pm .010^{\prime \prime}(0.25 \mathrm{~mm})$.

APPENDIX: Ground Pin Positions

O Indicates ground pin position

- Indicates glass insulated lead position
© Indicates ground pin or lead position depending on relay type

NOTES

1. Terminal views shown
2. Dimensions are in inches (mm)
3. Tolerances: $\pm .010$ ($\pm .25$) unless otherwise specified
4. Ground pin positions are within .015 (0.38) dia. of true position
5. Ground pin head dia., $0.035(0.89)$ ref: height $0.010(0.25)$ ref.
6. Lead dia. 0.017 (0.43) nom.
