Non-Latching, TO-5 High Shock, High Performance

HIGH-SHOCK, **HIGH-PERFORMANCE TO-5 RELAY DPDT**

SERIES	RELAY TYPE		
412K	DPDT High-Shock, Non-Latching Relay		
422K	DPDT High-Shock, Magnetic-Latching Relay		

DESCRIPTION

The TO-5 relay, originally conceived and developed by Teledyne, has become one of the industry standards for low-level switching from dry circuit to 1 ampere. Designed for highdensity PC board mounting, its small size and low coil power dissipation make the TO-5 relay one of the most versatile subminiature relays available.

The K Series high-shock TO-5 relays are designed to withstand shock levels up to 4000 q's, .5 millisecond duration. Special material selection and construction details provide assurance that critical elements of the relay structure and mechanism will not be permanently displaced or damaged as a result of extremely high g level shocks.

Typical applications:

- · Commercial avionics aircraft control
- · Commercial aircraft control systems
- Transportation systems (rail/truck)

By virtue of their inherently low intercontact capacitance and contact circuit losses, the K Series relays have proven to be excellent subminiature RF switches for applications with frequency ranges well into the UHF spectrum. A typical RF application for the TO-5 relay is in handheld radio transceivers, wherein the combined features of good RF performance, small size, low coil power dissipation and high reliability make it a preferred method of TR switching.

INTERNAL CONSTRUCTION OF 412K

PRINCIPLE OF OPERATION 422K

Energizing Coil B produces a magnetic field opposing the holding flux of the permanent magnet in Circuit B. As this net holding force decreases. the attractive force in the air gap of circuit A, which also results from the flux of the permanent magnet, becomes great enough to ARMATTI break the armature free of Core B, and snap it into a closed position against Core A. The armature

removal of power from Coil B, but will snap back to position B upon energizing Coil A. since operation depends upon cancellation of a magnetic field, it is necessary to apply the correct polarity to the relay coils as indicated on the relay schematic. When latching relays are installed in

equipment, the latch and reset coils should not be pulsed simultaneously. Coils should not be pulsed with less than rated coil voltage and the pulse width should be a

minimum of three times the specified operate time of the relay. If these conditions are not followed it is possible for the relay to be in the magnetically neutral position.

Non-Latching, TO-5 High Shock, High Performance

ENVIRONMENTAL AND PHYSICAL SPECIFICATIONS

412K				
Temperature (Ambient)		−65°C to +125°C		
Vibration (Note 1)		30 g's 10 to 3000 Hz		
	Operating (Note 1)	75 g's, 6ms half sine		
Shock	Survival Only	4000 g's, 0.5 msec. axial plane, half-sine 1000 g's, 0.5 ms side planes, half-sine		
Acceleration		50 g's		
Enclosure		Hermetically sealed		
Weight		0.09 oz. (2.55g) max.		

422K					
Temperati (Ambient)	ıre	–65°C to +125°C			
Vibration (Note 1)		30 g's 10 to 3000 Hz			
	Operating (Note 1)	100 g's, 6ms half sine			
Shock	Survival Only	2100 g's, 0.5 msec. axial plane, half-sine 750 g's, 0.5 msec side planes, half-sine			
Acceleration		50 g's			
Enclosure		Hermetically sealed			
Weight		0.09 oz. (2.55g) max.			

GENERAL ELECTRICAL SPECIFICATIONS (-65°C to +125°C unless otherwise noted)(Notes 2 & 3)

Contact Arrangement		2 Form C (DPDT)			
Contact Resistance		High Level: 0.1Ω maximum before life; 0.2Ω max. after life at 1A/28Vdc			
Measured 1/8" below header	422K	0.125Ω maximum before life; 0.225Ω max. after life at 1A/28Vdc			
Contact Load Rating (DC) (See Fig. 2 for other DC resistive voltage/current ratings)		Resistive: 1A/28Vdc Inductive: 200mA/28Vdc (320 mH) Lamp: 100mA/28Vdc Low Level: 10 to 50μA/10 to 50mV			
Contact Load Rating (AC)		Resistive: 250mA/115Vac, 60 and 400 Hz (Case not grounded) 100mA/115Vac, 60 and 400 Hz (Case grounded)			
Contact Bounce		3.0 ms maximum			
Contact Life Ratings		10,000,000 cycles (typical) at low level 1,000,000 cycles at 0.5A/28Vdc resistive 100,000 cycles min. at all other loads specified above			
Contact Overload Rating		2A/28Vdc Resistive (100 cycles min.)			
Contact Carry Rating		Contact Factory			
412K		500mW typ. @ 25°C			
Coil Operating Power	422K	290mW typ. @ 25°C			
Operate Time	412K	2.0 ms max.			
Operate Time 42		1.5 ms max.			
Release Time		1.5 ms max.			
Intercontact Capacitance		0.4 pf typical			
Insulation Resistance		10,000 MΩ minimum, between mutually isolated terminals			
Dielectric Strength		Atmospheric pressure: 500 (Vrms/60Hz) 70,000 ft.: 125 (Vrms/60Hz)			
Minimum Operate Pulse	422K	4.5ms width @ rated voltage			

Non-Latching, TO-5 High Shock, High Performance

DETAILED ELECTRICAL SPECIFICATIONS (-65°C to +125°C unless otherwise noted) (Note 3)

BASE PART NUMBERS (See full P/N example)		412K-5	412K-12	412K-26	
Coil Voltage, Nominal (Vdc)	Nom. Max.		5.0 5.8	12.0 16.0	26.5 32.0
412K Coil Resistance (Ohms ±10%, 25°C)	412K		50	300	1350
422K Coil Resistance (Ohms ±10%, 25°C)	422K		61	500	2000
Pick-up Voltage (Vdc, Max.)	412K		4.3	10.0	21.0
Drop-out Voltage (Vdc)	412K	Min.	0.14	0.41	0.89
Set & Reset Voltage (Vdc)	422K	Max	3.5	9.0	18.0

Part Numbering System (Notes 4 & 5)

Notes

- 1. Relay contacts will exhibit no chatter in excess of 10 µsec or transfer in excess of 1 µsec.
- 2. "Typical" characteristics are based on available data and are best estimates. No on-going verification tests are performed.
- 3. Unless otherwise specified, parameters are initial values.
- 4. Unless otherwise specified, relays will be supplied with gold-plated leads.
- 5. The slash and characters appearing after the slash are not marked on the relay.
- 6. Screened HI-REL versions available. Contact factory.

Series 412K / 422K

Non-Latching, TO-5 High Shock, High Performance

OUTLINE DIMENSIONS

TERMINAL LOCATIONS AND PIN NUMBERS (REF. ONLY) (Viewed from Terminals)

SCHEMATIC DIAGRAMS

SCHEMATICS ARE VIEWED FROM TERMINALS

Non-Latching, TO-5 High Shock, High Performance

APPENDIX: Spacer Pads Pad designation and For use with the Dim. H Height bottom view dimensions following: Max. 412K .295 (7.49) Ø 150 [3.81] (REF) Dim H 422K .305 (7.75) "M4" Pad for TO-5

Notes:

- 1. Spacer pad material: Polyester film.
- 2. To specify an "M4" spacer pad, refer to the mounting variants portion of the part numbering example in the applicable datasheet.
- 3. Dimensions are in inches (mm).
- 4. Unless otherwise specified, tolerance is ± .010" (.25 mm).
- 5. Add 10 m Ω to the contact resistance shown in the datasheet.
- 6. Add 0.01 oz. (0.25 g) to the weight of the relay assembly shown in the datasheet.

APPENDIX: Spreader Pads

Pad designation and bottom view dimensions	Height	For use with the following:	Dim. H Max.
.370 [9.4] MAX SQ .100 [2.54]	Dim H MAX 014 (0.36) (0.8F)	412K	.388 (9.86)
"M" Pad 5/ 6/	370 [9-4] MilN	422K	.398 (10.11)

Notes:

- 1. Spreader pad material: Diallyl Phthalate.
- 2. To specify an "M" spreader pad, refer to the mounting variants portion of the part number example in the applicable datasheet.
- 3. Dimensions are in inches (mm).
- 4. Unless otherwise specified, tolerance is ± .010" (0.25 mm).

Non-Latching, TO-5 High Shock, High Performance

APPENDIX: Ground Pin Positions

TO-5 Relays:

ER411T, ER412, ER412T, ER420, ER421, ER422, ER431T, ER432, ER432T, 712, 712TN, 400H, 400K, 400V, RF300, RF303, RF341, RF312, RF332, RF310, RF313, RF320, RF323, SI800, SI803, RF700, RF703

- Indicates ground pin position
- Indicates glass insulated lead position
- Indicates ground pin or lead position depending on relay type

NOTES

- 1. Terminal views shown
- 2. Dimensions are in inches (mm)
- 3. Tolerances: ± .010 (±.25) unless otherwise specified
- 4. Ground pin positions are within .015 (0.38) dia. of true position
- 5. Ground pin head dia., 0.035 (0.89) ref: height 0.010 (0.25) ref.
- 6. Lead dia. 0.017 (0.43) nom.