

A Unit of Teledyne Electronic Technologies

1.0A, 60 Vdc Optically Isolated Short-Circuit Protected

Part Number	Description
FR75-1	1A, 60 Vdc short-circuit protected
	solid-state relay for through-hole mount

ELECTRICAL SPECIFICATIONS

(-40°C to +85°C ambient temperature unless otherwise specified)

INPUT (CONTROL) SPECIFICATIONS

n Max	Units
5 5.5	Vdc
ıre 2) 15	mA
3	Vdc
1.5	Vdc
50	μAdc
0	Vdc
	5 5.5 ure 2) 15 3 1.5

OUTPUT (LOAD) SPECIFICATIONS

Mi	in Max	Units
Load Voltage Range	60	Vdc
Output Current Rating (See Fig	ure 4) 1.0	Adc
Leakage Current at Rated Volta	ge 100	μAdc
Transient Blocking Voltage	80	Vdc
Output Capacitance @25Vdc (2	25°C) 600	pF
Output Voltage Drop	0.32	Vdc
On Resistance	0.32	Ohm
Turn-On Time	3.0	ms
Turn-Off Time	0.3	ms
Trip Overload (See Figure 6)	6	Adc

MECHANICAL SPECIFICATION

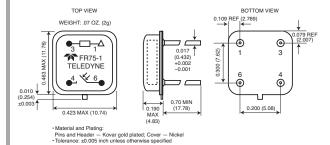


Figure 1 – FR75-1 mechanical specification; dimensions in inches (mm)

FEATURES/BENEFITS

- Short-circuit protected: Prevents damage to system components, assemblies and system wiring
- Optical isolation: Isolates control circuits from load transients and eliminates ground loops and signal ground noise
- Low off-state leakage: For high off-state impedance
- · Switches high currents: To 1.0 Adc
- High noise immunity: Control signals isolated from switching noise
- High dielectric strength: For safety and for protection of control and signal level circuits

DESCRIPTION

The FR75-1 solid-state relay utilizes a power FET switch that is protected against short circuits and overload currents. The short-circuit protection feature provides protection when a short or overload occurs while the relay is on as well as when the relay is switched into a short. In either case, the relay will sense the short-circuit condition and then block it indefinitely until the short is removed and the unit is reset by cycling the input control. Using the FR75-1 to switch power sources and loads prevents damage to system assemblies and system wiring. The power FET output offers low "ON" resistance and can switch loads in either the high or the low side of the power line. The FR75-1 is packaged in a low-profile mini-DIP package.

A Unit of Teledyne Electronic Technologies

GENERAL SPECIFICATIONS

(+25°C ambient temperature unless otherwise specified)

ENVIRONMENTAL SPECIFICATION

		Min	Max	Units		
Operating Temperature		- 40	+85	°C		
Storage Temperature		– 55	+125	°C		
Junction Temper	1A	+125	°C			
Thermal Resista		125	°C/W			
Shock		1500		g		
Vibration		100		g		
Dielectric Strength		500		Vac		
Insulation Resistance						
(@500 Vdc)		10 ⁹		Ohm		
Input to Output Capacitance			5	pF		
Altitude		55,000				
Resistance to						
Soldering Heat	MIL STD 202, method 210					
Solderability	MIL STD 202, method 208					
Thermal Shock	MIL ST	D 202, metho	od 107			

INPUT CURRENT VS. INPUT VOLTAGE

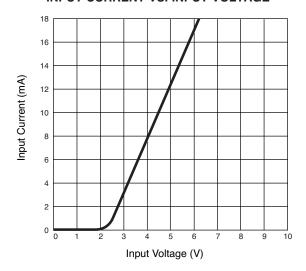


Figure 2 — FR75-1 input current vs. input voltage

FUNCTIONAL BLOCK DIAGRAM

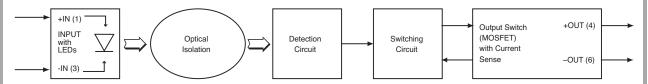


Figure 3 — FR75-1 functional block diagram

LOAD CURRENT VS. AMBIENT TEMPERATURE

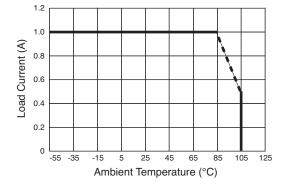


Figure 4 — FR75-1 load current vs. ambient temperature

TYPICAL WIRING DIAGRAM

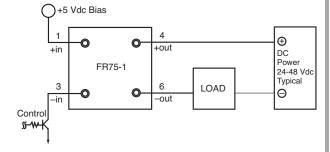


Figure 5 — FR75-1 typical wiring diagram

A Unit of Teledyne Electronic Technologies

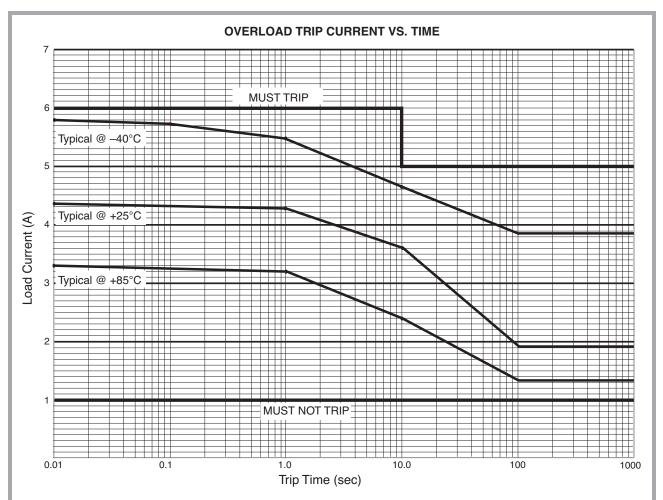


Figure 6 — FR75-1 overload trip current vs. time

NOTES

- For input voltages greater than 6 volts, use an external resistor in series with the relay input. Select resistor value with the following equation: Rext. = (Vin-6Vdc)/15mA
- Unless otherwise specified: conformance testing is at room temperature; the input voltage is 5 Vdc or zero volts as required; the output load is 48 Vdc, 1 amp.
- 3. With a shorted load condition, system inductance shall be limited to 50 $\mu\text{H}.$
- 4. Relay input voltage transitions should be less than 1.0 millisecond.
- Maximum load current ratings are with the relay in free air and soldered to a printed circuit board.
- 6. Loads may be attached to either the positive or negative output terminal
- 7. Timing is measured from the input voltage transition to the 10% or 90% point on the output voltage off-to-on or on-to-off transition. Rise and fall times are measured from the 10 to 90% points on the output voltage transition.
- 8. Hermeticity is not a requirement.