

Part* Relay
Number Description

LD00KQ 270Vdc, 20A Solid State Relay

* The Y suffix denotes parameters tested to MIL-PRF-28750 specifications. The W suffix denotes parameters tested to Teledyne Specifications.

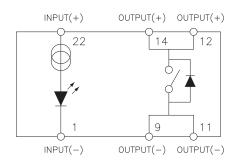
ELECTRICAL SPECIFICATIONS

(-55°C to +125°C UNLESS OTHERWISE NOTED)

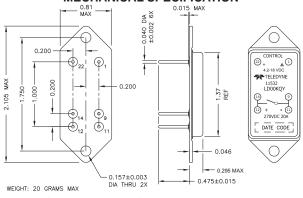
INPUT (CONTROL) SPECIFICATIONS

	Min	Тур	Max	Units
Input Current @ V _{IN} = 5 Vdc(See Fig	2,4)		50	mΑ
Turn-Off Voltage (Guaranteed Off)			1.5	Vdc
Turn-On Voltage (Guaranteed On)	4.2			Vdc
Reverse Voltage Protection*			-32	Vdc
Input Supply Range (See Note 1)	4.2		18	Vdc

^{*}Guaranteed by design but not tested


FEATURES

- High Voltage
- Low ON resistance power SiC MOSFET output
- Fast switching speed
- Meets 270 Vdc system requirements of MIL-STD-704
- Optical isolation
- · Low profile hermetic package
- Built and tested to the requirements of MIL-PRF-28750


DESCRIPTION

The Series LD00KQ solid-state relays are screened utilizing MIL-PRF-28750 test methods and are packaged in low profile hermetically sealed cases. These relays are constructed with state-of-the-art solid state techniques and feature fully floating power FET output technology. This allows the load to be connected to either output terminal and provides a low ON resistance. The input and output are optically isolated to protect input logic circuits from output transients.

BLOCK DIAGRAM

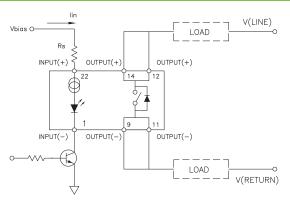
MECHANICAL SPECIFICATION

TOLERANCES (UNLESS OTHERWISE SPECIFIED): $.XX = \pm .010$ $.XXX = \pm .005$

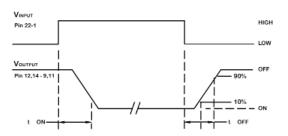
ENCLOSURE: HERMETICALLY SEALED DIP

CAN - COLD ROLLED STEEL NICKEL PLATED MATERIAL HEADER - COLD ROLLED STEEL NICKEL PLATED

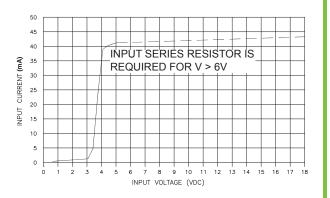
PINS - COPPER CORE



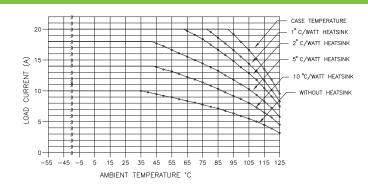
20A, 270Vdc, Optically Isolated NEW Silicon Carbide DC Solid-State Relay


OUTPUT (LOAD) SPECIFICATIONS						
(See Note 2)	Min	Тур	Max	Units		
Load Current without heatsink (Figure	e 3)		10	Adc		
Load Current with heatsink (Figure 3))		20	Adc		
Leakage Current @ V _{LOAD} = 270 Vdc			10	μΑ		
Output Voltage Drop @ 20A			0.5	Vdc		
Continuous Operating Load Volta	age		270	Vdc		
Transient Blocking Voltage			500	Vdc		
ON Resistance			0.025	Ohm		
Turn-On Time (See Fig. 6)			7	ms		
Turn-Off Time (See Fig. 6)			2	ms		
Electrical System Spike @ 25°C			±600	Vpk		
Input to Output Capacitance			10	pF		
Dielectric Strength	1000			Vac		
Insulation Resistance @ 500 Vdc	10 ⁹			Ohm		
Output Junction Temperature			135	°C		
@ I _{LOAD} = I _{MAX RATED}						
Thermal Resistance Junction to Ambient (θ _{JA})		30	°C/W			
Thermal Resistance Junction to Case (θ _{JC})		5	°C/W			

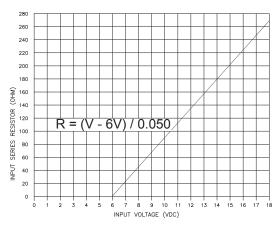
ENVIRONMENTAL SPECIFICATIONS


	Min	Тур	Max	Units
Temperature Range				
Operating	-55		+125	°C
Storage	-55		+125	°C
Vibration 100g	10		3000	Hz
Constant Acceleration			5000	g
Shock, 0.5 ms			1500	g

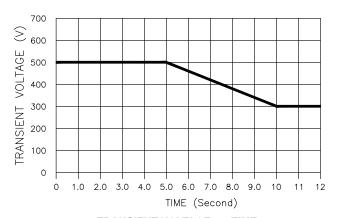
WIRING CONFIGURATIONS FIGURE 1 (See Note 1)



OUTPUT TURN-ON AND TURN-OFF TIMING FIGURE 2



BIAS (INPUT) CURRENT VS BIAS (INPUT) VOLTAGE FIGURE 3 (See Note 1)



LOAD CURRENT DERATING CURVE FIGURE 4

SERIES LIMIT BIAS RESISTOR VS BIAS VOLTAGE FIGURE 5 (See Note 1)

TRANSIENT VOLTAGE vs. TIME FIGURE 6

NOTES:

- 1. For bias voltages above 6V, a series resistor is required. Use the standard resistor value equal to or less than the value found in Figure 4.
- 2. The rated input voltage is 5V for all tests unless otherwise specified.
- 3. Inductive loads should be diode suppressed. Input transitions should be ≤1 ms duration and the input drive should be a bounce-less contact type.
- 4. Contact factory for higher voltage relays.