

Series SR75-2

TELEDYNE
RELAYS

A Unit of Teledyne Electronic Technologies

0.75A, 300Vdc Optically Isolated, Short-Circuit Protected for AC or DC Loads DC Solid-State Relay

Part Number*	Relay Description
SR75-2	Solid-State Relay with Terminals for Through-Hole Mount
SR75-2S	Solid-State Relay with Terminals for Surface Mount

* A 'W' or 'T' suffix denoting the S Teledyne reliability screening level, must be added to the part number.

ELECTRICAL SPECIFICATIONS

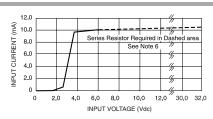
(-55°C TO 105°C, Ambient Temperature Unless Otherwise Specified)

INPUT (CONTROL) SPECIFICATIONS

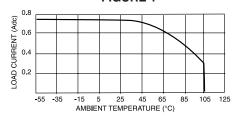
	Min	Max	Units	
Control Voltage Range (See Note 6)	3.8	32.0	Vdc	
Input Current @ 5 Vdc (See Figure 1)		11.0	mA	
Must Turn-On Voltage (See Note 7)	3.8		Vdc	
Must Turn-Off Voltage		1.5	Vdc	
Reverse Voltage Protection		-32.0	Vdc	

OUTPUT (LOAD) SPECIFICATION

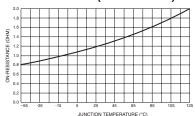
OUTPUT (LOAD) SPECIFICATION						
	Min	Max	Units			
Load Voltage Rating		300	Vdc			
Transient Blocking Voltage		320	Vdc			
Output Current Rating (See Figure 2)		0.75	Adc			
On Resistance (See Figure 3)			Ohm			
Leakage Current at Rated Voltage		100	μΑ			
Turn-On Time		4.5	ms			
Turn-Off Time		0.5	ms			
dV/dt @ 60V (See Note 8)		100	V/μs			
Electrical System Spike (See Note 8)		± 600	Vpk			
Output Capacitance @ 100 KHz, 25 Vdc (See Note 8) 250						
Input to Output Capacitance at 1 KHz (See Not	te 8)	5	pF			
Dielectric Strength (See Note 8)	1000		Vrms			
Insulation Resistance (See Note 8)	108		Ohm			
Junction Temperature		130	°C			
Thermal Resistance (Junction to Ambient)		90	°C/W			
Solderability (10 sec)		260	°C			


FEATURES/BENEFITS

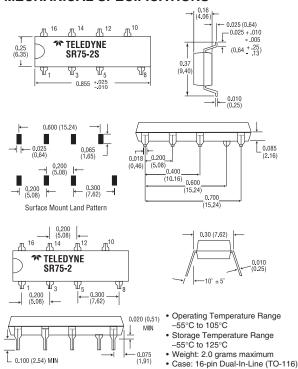
- Short-Circuit Protected: Prevents damage to system components, assemblies and system wiring. Can be connected to protect AC or DC loads (AC with diode bridge)
- Optical Isolation: Isolates control circuits from load transients Eliminates ground loops and signal ground noise
- Low Off-State Leakage: For high offstate impedance
- Switches High Voltages: To 300 Vdc
- Switches High Currents: To 0.75 Adc
- High Noise Immunity: Control signals isolated from switching noise
- High Dielectric Strength: For safety and for protection of control and signal level circuits

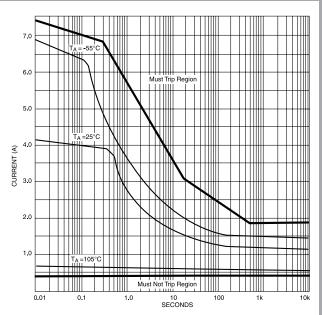

DESCRIPTION

The SR75-2 solid-state relay utilizes a power FET switch that is protected against overload and short-circuit currents. The short-circuit protection feature not only provides protection should a short or overload occur while the relay is on, but will also provide protection should the relay be switched into a short. Once the protection trips the relay, it will remain off until reset by cycling the input control line. Using the SR75-2 to switch power sources and loads can prevent fires, damage to system assemblies and system wiring. The power FET output offers low "ON" resistance and can switch loads in either the high or the low side of the power line. The SR75-2 is packaged in a 16-pin DIP package with either surface-mount or through-hole mounting available.

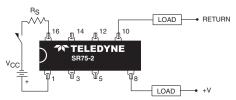

A Unit of Teledyne Electronic Technologies

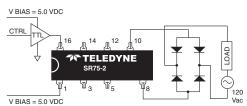
CONTROL CURRENT VS VOLTAGE FIGURE 1




LOAD CURRENT DERATING CURVE FIGURE 2 (SEE NOTE 5)

TYPICAL ON RESISTANCE VS T FIGURE 3


MECHANICAL SPECIFICATIONS



TRIP CURRENT VS TIME FIGURE 4

WIRING CONFIGURATIONS

SHORT-CIRCUIT PROTECTED DC LOADS (SEE NOTES 3, 4 AND 6, FIGURE 3 AND 4)

SHORT-CIRCUIT PROTECTED AC LOADS (SEE NOTE 6)

NOTES:

- 1. The input voltage is 5.0 Vdc for all tests unless otherwise
- 2. Reversing the output polarity when the relay is in overload or is sustaining a short circuit may cause permanent damage.
- 3. Inductive loads must be diode suppressed.
- Loads may be switched in either the high side or the low side of the power source.
- 5. Continuous load current rating is determined with relay mounted on a printed circuit card.
- 6. For input voltage greater than 6.0 Vdc a series resistor must be used to limit the power dissipation on the input of the relay. The resistor value should be selected using the following equation:
- $R = (V_{BIAS} 6 \text{ volts})/11\text{mA}$ 7. Input transitions are to be less than 1 msec.
- 8. Tested at 25°C ambient.

DIMENSIONS ARE IN INCHES

(MILLIMETERS)

· Case Material: Filled epoxy, self-

extinguishing