

TEMEX-CERAMICS

High Capacitance Multilayer Ceramic Capacitors

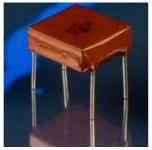
TABLE OF CONTENTS

I.	Foreword	3
II.	General description	3
III	Chips	4
IV	Radial leaded capacitors	6
V	"CNC" Series	9
	"SC" and "SV" Series	
VII	"TB" Series	
VII	Dielectric characteristics	
V		
VII	Termination types	
VIII	Special products	11
IX	How to order	
Χ	Packaging	11

I. Foreword

These capacitors have been developed in response to demand from switched mode power supply (S.M.P.S.) and DC-DC converters manufacturers. They are particularly suitable for filtering, smoothing and decoupling purpose in Hi-Rel equipments. The capacitors utilize advanced ceramic technology to achieve Hi-Rel long operating life and small size. They are designed for hybrid assemblies and low profile printed circuit applications.

Customized assemblies may be achieved with standard bare chip sizes mentioned in the following chapters.


II. General description

The capacitors here mentioned concern the voltage equal or higher than 50V, in bare chips or leaded devices. Two dielectrics are proposed in X7R Class: the "X" series and the "T" series. Each of them has it own characteristics in between the "X7R" Class limitations.


Bare chips (SMD):

Leaded devices on assemblies (examples):

III Chips

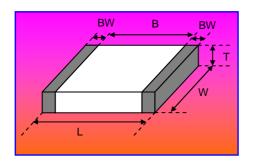
III-1 Features

The SMD or chips components are the basis capacitors of all the leaded assemblies. Generally not used as chips especially for the sizes above 2229 for soldering reasons (cf the soldering recommendation), the tables hereunder are given for the capacitance range and the thickness of these basis capacitors.

III-2 Capacitance range

Cr	Cr				22	229							30	33							37	'40							54	40			
Code	(µF)	50	VC	10	VO	20	00V	50	VO	50	ΟV	10	0V	20)0V	50)0V	50	ΟV	10	OV	20	0V	50	VO	5	0V	10	0V	20)0V	500	VC
104	0.10					1.8		3.0	2.3							2.5	2.6																
124	0.12					1.8		3.0	2.3							2.5	2.6																
154	0.15					2.0			2.3							2.5	2.6																
184	0.18					2.0			2.6							3.2								3.0	2.6								
224	0.22					2.5			2.8							3.2								3.0	2.6								2.7
274	0.27					2.5	2.3		3.1					2.0		3.5	-							3.0	2.6							3.0	2.7
334	0.33	1.8		1.8		3.0								2.0		-	2.8					2.0		3.3	2.6					2.5		3.5	2.7
394	0.39	1.8		1.8		3.0								2.0			3.1					2.0		3.5	2.6					2.5		3.5	2.7
474	0.47	1.8		1.8			2.3							2.0			3.5					2.0		4.0	2.6					2.5		3.5	2.7
564	0.56	2.0		2.0			2.5							2.5	2.3							2.0			2.9	2.0		2.0		2.5		3.8 4.0	2.7
684	0.68	2.0		2.0	2.3		2.8			2.0		2.0		3.0	2.3							2.5	2.3		3.4	2.0		2.0		3.0	2.6	4.0	2.7
824 105	0.82 1.0	2.2		2.2	2.3					2.5		2.5		3.3	2.4	_		2.0		2.0		3.0	2.3		3.6	2.0		2.0		3.0		4.2	2.7
125	1.0	2.5		2.5						2.5		2.5			2.9			2.0		2.0		3,5	2.3			2.0		2.0		3.5			3.3
155	1.5	3.0		3.0	2.3					2.8	2.3	2.8	2.3		3.4			2.0	2.3	2.0	2.3	4.0	2.6			2.0		2.0		3.5	2.6		3.9
185	1.8		2.3		2.3					2.8	2.3	2.8	2.3					2.5	2.3	2.5	2.3		2.8			2.0		2.0		4.0	2.6		
225	2.2		2.6		2.6					2.8	2.3	2.8	2.3					2.5	2.3	2.5	2.3		3.2			2.5	2.6	2.5	2.6	4.0	2.6		
275	2.7		2.9		2.9					3.3	2.4	3.3	2.4					2.8	2.3	2.8	2.3		3.6			2.5	2.6	2.5	2.6		2.6		
335	3.3									3.8	2.5	3.8	2.5					2.8	2.3	2.8	2.3					3.0	2.6	3.0	2.6		3.3		
395	3.9										2.8		2.8					3.3	2.3	3.3	2.3					3.0	2.6	3.0	2.6		3.7		
475	4.7										3.1		3.1					3.5	2.3	3.5	2.3					3.0	2.6	3.0	2.6				
565	5.6																		2.6		2.6					3.5	2.6	3.5	2.6				
685	6.8																		3.0		3.0					3.5	2.6	3.5	2.6				
825	8.2																		3.6		3.6					3.8	2.6	3.8	2.6				
106	10																										2.8		2.8				
126	12																										3.2		3.2				
156	15																																
186	18	L																															_
226	22																																
276	27																																

"X" series in green cells


"T" series in blue cells

Cr	Cr				55	50							65	60						60	80	/80	60						45	107	7		
Code	(µF)	50	ΟV	10	0V	20	0V	50	0V	50	ΟV	10	0V	20	0V	50	0V	50	٥V	10	0V	20	0V	50	0V	5	0V	10	0V	20)0V	50	0V
104	0.10																																
124	0.12																																
154	0.15																																
184	0.18																																
224	0.22																																
274	0.27							2.5	2.6							2.5	2.6																
334	0.33							2.5	2.6							2.5	2.6																
394	0.39							2.5	2.6							2.5	2.6																
474	0.47							3.0	2.6							2.5	2.6																
564	0.56							3.0	2.6					2.0		2.5	2.6																
684	0.68							3.0	2.6					2.0		2.5	2.6							3.0	2.6						_	3.5	3.1
824	0.82					3.0		3.5	2.6					2.0		3.0	2.6							3.0	2.6					3.0	3.0	3.5	3.1
105	1.0					3.0		4.2	2.8	2.0		2.0		2.0	2.6	3.0	2.6							3.0	2.6	3.0		3.0		3.0	3.0	3.8	3.1
125	1.2					3.0	2.6		3.3	2.0		2.0		2.0	2.6	3.5	2.6							3.5	2.6	3.0		3.0		3.0	3.0	3.8	3.1
155	1.5					3.0	2.6		3.6	2.0		2.0		2.5	2.6	4.0	3.0					3.0		4.0	2.6	3.0	3.0	3.0	3.0	3.0	3.0		3.1
185	1.8	2.5		2.5		3.0	2.6		4.1	2.0		2.0		2.5	2.6	4.5	3.0					3.0		4.5	2.6	3.0	3.0	3.0	3.0	3.0	3.0		3.1
225	2.2	2.5		2.5		3.0	2.6			2.0		2.0		2.5	2.6		3.3					3.0	2.6		2.6	3.0	3.0	3.0	3.0	3.5	3.0		3.1
275	2.7	2.5		2.5		3.5	2.6			2.0	2.6	2.0	2.6	3.0	2.6		3.8					3.0	2.6		3.3	3.0	3.0	3.0	3.0	3.8	3.0		3.1
335	3.3	2.5	2.6	2.5	2.6	4.0	2.8			2.0	2.6	2.0	2.6	3.0	2.6		4.3					3.0	2.6		3.9	3.0	3.0	3.0	3.0	4.0	3.0		
395	3.9	2.5	2.6	2.5	2.6		3.1			2.0	2.6	2.0	2.6	3.5	2.6			3.0		3.0		3.5	2.6		4.4	3.0	3.0	3.0	3.0		3.0		
475	4.7	3.0	2.6	3.0	2.6		3.5			2.0	2.6	2.0	2.6	4.0	2.6			3.0		3.0		4.0	2.6			3.0	3.0	3.0	3.0		3.0		
565	5.6	3.0	2.6	3.0	2.6			-		2.5	2.6	2.5	2.6		2.9			3.0		3.0			2.6			3.0	3.0	3.0	3.0		3.0		
685	6.8	3.0	2.6	3.0	2.6	_				2.5	2.6	2.5	2.6		3.3			3.0	2.6	3.0	2.6		3.0			3.0	3.0	3.0	3.0				
825	8.2	3.5	2.6	3.5	2.6					3.0	2.6	3.0	2.6		3.8			3.0	2.6	3.0	2.6		3.6			3.0	3.0	3.0	3.0				
106	10	3.8	2.6	3.8	2.6					3.0	2.6	3.0	2.6					3.5	2.6	3.5	2.6					3.5	3.0	3.5	3.0				_
126	12		2.8		2.8					3.5	2.6	3.5	2.6	_				3.5	2.6	3.5	2.6					3.5	3.0	3.5	3.0				
156	15		3.2		3.2			-		4.0	2.6	4.0	2.6					3.5	2.6	3.5	2.6						3.0		3.0				_
186	18							-			2.6		2.6						2.6		2.6						3.0		3.0				
226	22	_						-		_	3.0		3.0						2.8		2.8						3.0		3.0				_
276	27										3.6		3.6						3.3		3.3						3.3		3.3				

III-3 Dimensions

The thickness is indicated in the capacitance range tables

All dimensions in mm

Size	L	Tol	W	Tol	BW	BW
		±		±	(min)	(max)
2229	5.7	0.4	7.0	0.4	0.25	1.4
3033	7.4	0.5	8.0	0.5	0.5	2.0
3740	9.6	0.5	9.8	0.5	0.5	2.0
5440	13.7	0.5	10.2	0.5	0.5	2.0
5550	13.7	0.5	12.3	0.5	0.5	2.0
6080	15	0.8	19.8	0.8	0.5	2.0
6560	16.9	0.8	15.5	0.8	0.5	2.0
8060	19.8	0.8	14.9	0.8	0.5	2.0
45107	10.8	0.5	27.5	max	0.5	2.0

HIGH CAPACITANCE MULTILAYER CERAMIC CAPACITORS IV Radial leaded capacitors

IV-1 Features

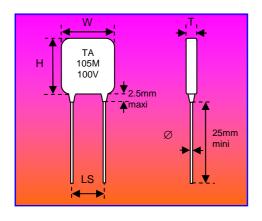
Connected by 2 wires, these components have only one basis chips. This 2 wires termination makes the parts perfectly suitable to any design capable to withstand severe environmental conditions (chocks, bumps, vibrations...). An epoxy coating is applied to protect the parts, the parts are marked.

IV-2 Capacitance range

Cr	Cr				R2	229	9			-			R3	033	3						R3	740)						R5	440)		
Code	(µF)	50	V	10	0V	20	V0	50	0V	50	V	10	0V	20	0V	50	0V	50	V	10	V0	20	0V	50	V00	5	0V	10	0V	20	0V	500	V
104	0.10					3.1		4.3	3.5							3.8	3.9																
124	0.12					3.1		4.3	3.5							3.8	3.9																
154	0.15					3.3		4.5	3.7							3.8	3.9																
184	0.18					3.3			3.9							4.5	3.9							4.3	3.9								
224	0.22					3.8			4.2							4.5	3.9	_						4.3	3.9							4.3	4.0
274	0.27					3.8	3.5		4.6					3.3		4.8	3.9	L						4.3	3.9							4.3	4.0
334	0.33	3.1		3.1		3.8	3.5							3.3			4.1					3.3		4.6	3.9					3.8		4.8	4.0
394	0.39	3.1		3.1		4.3	3.5							3.3			4.4	-				3.3		4.8	3.9					3.8		4.8	4.0
474	0.47	3.1		3.1			3.7			_		_		3.3	3.6		4.8	<u> </u>				3.3		5.3	3.9					3.8		4.8	4.0
564	0.56	3.3		3.3			3.9							3.8	3.6							3.3			4.2	3.3		3.3		3.8	3.9	5.1	4.0
684	0.68	3.3	3.5	3.3	3.5	_				3.3		3.3		4.3	3.6			_				3.8			4.7	3.3		3.3		3.8	3.9	5.3	4.0
824	0.82	3.3	3.5	3.3	3.5					3.3		3.3		4.8	3.7							3.8	3.6		5.1	3.3		3.3		4.3	3.9	5.5	4.0
105	1.0	3.5	3.5	3.5	3.5					3.8		3.8			3.9			3.3		3.3		4.3	3.6			3.3		3.3		4.3	3.9		4.0
125 155	1.2		3.5							3.8		3.8			4.2			3.3		3.3		4.8	3.6			3.3		3.3		4.8	3.9		4.6
185	1.5 1.8		3.5		3.5					4.1	3.6	4.3	3.6		4.7			3.3	3.6	3.3		5.3	3.9			3.3		3.3		4.8	3.9		5.2
225	2.2	4.3		4.3						4.1	3.6							3.8	3.6				4.1			3.3		3.3		5.3	3.9		_
275	2.7		4.0		4.0					4.1	3.6		3.6					3.8	3.6	3.8	3.6		4.5			3,8	3.9			5.3	3.9		_
335	3.3		4.3		4.3					4.6	3.7	4.6	3.7					4.1	3.6	4.1	3.6		4.9			3.8	3.9	3.8			3.9		
395	3.9									5.1	3.8	5.1	3.8					4.1	3.6	4.1						4.3	3.9		3.9		4.6 5.0		
475	4.7										4.4		4.1					4.6	3.6	4.6						4.3			3.9		5.0		
565	5.6										**.**		4.4					4.0	3.9	4.6	3.9					4.8							
685	6.8																		4.3		4.3					4.8	3.9						
825	8.2																		4.9		4.9					5.1	3.9	5.1	3.9				
106	10																										4.1		4.1				
126	12																										4.5		4.5				
156	15																																
186	18																																
226	22																																
276	27																																

"X" series in green cells

"T" series in blue cells


Cr	Cr				R5	55()						R6	560)				F	R60	80	/R8	306	0	
Code	(µF)	50	V	10	0V	20	0V	50	0V	50	ΟV	10	0V	20	0V	50	0V	50)V	10	0V	20	0V	50	0V
104	0.10																								
124	0.12																								
154	0.15																								
184	0.18																								
224	0.22																								
274	0.27							3.8	3.9							3.8	3.9								
334	0.33							3.8	3.9							3.8	3.9								
394	0.39							3.8	3.9							3.8	3.9								
474	0.47							4.3	3.9							3.8	3.9								
564	0.56	L_						4.3	3.9					3.3		3.8	3.9								
684	0.68							4.3	3.9					3.3		3.8	3.9							4.3	3.9
824	0.82					4.3		4.3	3.9					3.3		4.3	3.9							4.3	3.9
105	1.0					4.3		5.5	4.1	3.3		3.3		3.3	3.9	4.3	3.9							4.3	3.9
125	1.2					4.3	3.9		4.6	3.3		3.3		3.3	3.9	4.8	3.9							4.8	3.9
155	1.5					4.3	3.9		4.9	3.3		3.3		3.8	3.9	5.3	4.3					4.3		5.3	3.9
185	1.8	3.8		3.8		4.3	3.9		5.4	3.3		3.3		3.8	3.9	5.8	4.3					4.3		5.8	3.9
225	2.2	3.8		3.8		4.3	3.9			3.3		3.3		3.8	3.9		4.6					4.3	3.9		3.9
275	2.7	3.8		3.8		4.8	3.9			3.3	3.9	3.3	3.9	4.3	3.9		5.1					4.3	3.9		4.6
335	3.3	3.8	3.9	3.8	3.9	5.3	4.1			3.3	3.9	3.3	3.9	4.3	3.9		5.6					4.3	3.9		5.2
395	3.9	3.8	3.9	3.8	3.9		4.4			3.3	3.9	3.3	3.9	4.8	3.9			4.3		4.3		4.8	3.9		5.7
475	4.7	4.3	3.9	4.3	3.9		4.8			3.3	3.9	3.3	3.9	5.3	3.9			4.3		4.3		5.3	3.9		
565	5.6	4.3	3.9	4.3	3.9					3.8	3.9	3.8	3.9		2.9			4.3		4.3			3.9		
685	6.8	4.3	3.9	4.3	3.9					3.8	3.9	3.8	3.9		4.6			4.3	3.9	4.3	3.9		4.3		
825	8.2	4.8	3.9	4.8	3.9					4.3	3.9	4.3	3.9		5.1			4.3	3.9	4,3	3.9		4.9		
106	10	5.1	3.9	5.1	3.9					4.3	3.9	4.3	3.9					4.8	3.9	4.8	3.9				
126	12		4.1		4.1					4.8	3.9	4.8	3.9					4.8	3.9	4.8	3.9				
156	15		4.5		4.5					5.3	3.9	5.3	3.9					4.8	3.9	4.8	3.9				
186	18	L_									3.9		3.9	_					3.9		3.9				
226	22	L_									4.3		4.3						4.1		4.1				
276	27										4.9		4.9						4.6		4.6				

"X" series in green cells

"T" series in blue cells

IV-3 Dimensions

The thickness is indicated in the capacitance range tables

All dimensions in mm

Size	W max	H max	LS ±0.5	D ±12%
2229	7.6	9.8	5.08	0.5
3033	11.0	11.0	5.08	0.5
3740	12.7	12.3	10.2	0.6
5440	17.2	12.7	15.2	0.9
5550	17.2	14.8	15.2	0.9
6080	18.8	22.6	15.2	0.9
6560	20.3	18.3	17.8	0.9
8060	23.6	17.7	20.3	0.9

IV-4 Marking

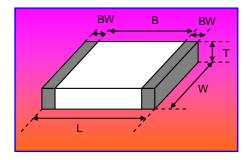
Size	Marking codes	Example
≤ 2229	Cap Code + Tolerance Code Rated voltage value	105M 100V
> 2229	« TA » logo Cap Code + Tolerance Code Rated voltage value	TA 105M 100V

.

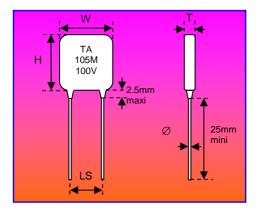
V "CNC" Series

V-1 Features

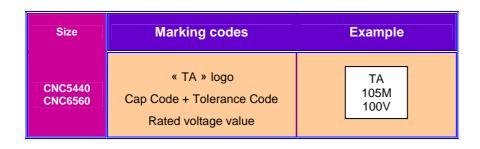
These products are derived from the standard R5440 and R6560 basis chips. This series has the same performance than the radial lead components series. Other capacitances versus rated voltages are completing the range of the radial lead components series. Also connected with 2 wires, the coating and the marking are applied. The "X" dielectric only is available at the moment.


IV-2 Capacitance range

					СН	IPS					RAD	IAL I	LEA	DED	DEV	/ICE	S
Cr	Cr		CNC	5440)		CNC	6560)		CNC	5440)		CNC	6560)
Code	(µF)	63V	100V	250V	400V	63V	100V	250V	400V	63V	100V	250V	400V	63V	100V	250V	400V
104	0.10																
124	0.12																
154	0.15																
184	0.18																
224	0.22				2.5								3.8				
274	0.27				2.5				2.0				3.8				3.3
334	0.33			2.5	2.5				2.0			3.8	3.8				3.3
394	0.39			2.5	3.0				2.0			3.8	4.3				3.3
474	0.47			2.5	3.0				2.0			3.8	4.3				3.3
564	0.56		2.0	2.5	3.0			2.0	2.0		3.3	3.8	4.3			3.3	3.3
684	0.68		2.0	3.0	3.5			2.0	2.5		3.3	4.3	4.8			3.3	3.8
824	0.82		2.0	3.0	4.0			2.0	3.0		3.3	4.3	5.3			3.3	4.3
105	1.0		2.0	3.0	4.4		2.0	2.0	3.0		3.3	4.3	5.7		3.3	3.3	4.3
125	1.2		2.0	3.5			2.0	2.0	3.5		3.3	4.8			3.3	3.3	4.8
155	1.5	2.0	2.0	3.5		2.0	2.0	2.5	4.0	3.3	3.3	4.8		3.3	3.3	3.8	5.3
185 225	1.8 2.2	2.5	2.5	4.0		2.0	2.0	2.5	5.0	3.3	3.8	5.3		3.3	3.3	3.8	6.3
275	2.7	2.5	2.5	4.0		2.0	2.0	2.5		3.8	3.8	5.3		3.3	3.3	3.8	
335	3.3	3.0	2.5			2.0	2.0	3.0		3.8	3.8			3.3	3.3	4.3	
395	3.9	3.0	3.0			2.0	2.0	3.0		4.3	4.3			3.3	3.3	4.3	
475	4.7	3.0	3.0			2.0	2.0	3.5		4.3	4.3			3.3	3.3	4.0	
565	5.6	3.5	3.5			2.5	2.5			4.8	4.8			3.8	3.8		
685	6.8	3.5	3.5			2.5	2.5			4.8	4.8			3.8	3.8		
825	8.2	3.8	3.8			3.0	3.0			5.1	5.1			4.3	4.3		
106	10					3.0	3.0							4.3	4.3		
126	12					3.5	3.5							4.8	4.8		
156	15					4.0	4.0							5.3	5.3		


"X" series in green cells

V-3 Dimensions


All dimensions in	mm L	Tol	W	Tol	BW	BW
- 0120	<u> </u>	±		±	(min)	(max)
CNC5440	13.7	0.5	10.2	0.5	0.5	2.0
CNC6560	16.9	0.8	15.5	0.8	0.5	2.0

Size	W max	H max	LS ±0.5	D ±12%
CNC5440	17.2	12.7	15.24	0.9
CNC6560	20.3	18.3	17.8	0.9

Note: products in 100V can also be order under "R5440" or "R6560" case codes since there is no technical differences between both designations

V-4 Marking

VI "SC" and "SV" Series

VI-1 Features

The « SV » Series looks like the radial 2 wires components Series except the assemblies are made with 2 to 4 basis chips. This allows extending the 2 wires terminations.

The "SC" Series offer 4 wires (W4), Dual In Line (DIL) or ribbons terminations making them perfectly suitable to any design (ceramic substrate, epoxy board...) capable to withstand severe environmental conditions (shocks, bumps, vibrations...) as the "SV" Series.

VI-2 Capacitance range

Cr	Cr		SC (22				SC01/ (30)2/S 374	5V02 0)			S		/SV03 40)		
Code	(μF)	50V	100V	200V	500V	50V	100V	200V	500V	50V	100	V	200V	500V	50V	1	V00	200V	50	00V
104	0.10			2.0	3.2															
124	0.12			2.0	3.2				2.7 2.8			_				_			-	
154	0.15			2.2	6.4				2.7 2.8			-				+			+	
184 224	0.18 0.22			2.2	6.4				3.4 2.8			+		3.2 2.8		+				
274	0.22			2.7	6.4				3.4 2.8			-		3.2 2.8		+			2.7	2.9
334	0.33	0.0	2.2	4.4	9.6			2.2	5.4 2.8 6.1 3					3.2 2.8 3.5 2.8		+		0.7	2.7	2.9
394	0.39	2.2	2.2	4.4	13			2.2	6.1 3.3				2.2	3.5 2.8		+		2.7	3.2	2.9
474	0.47	2.2	2.2	5.4	12.8			2.2 2.5	6.9 3.7				22	6.4 2.8		+		2.7	3.2	
564	0.56	2.2	2.2	5.4	13.6				10.5 5.6				2.2	6.7 3.1	2.2	2.2		2.7 2.8		
684	0.68	2.2	2.2	8.1		2.2	2.2		10.5 6.3				2.7	7.0 3.6	2.2	2.2		3.2 2.8		
824	0.82	2.2	2.2	8.1		2.2	2.2	4.4 2.6	13.9 6.6				2.7 2.5	9.9 4.0	2.2	2.2		3.2 2.8	4.2	2.9
105	1.0	2.4	2.4	10.8		2.7	2.7	4.4 2.8	14.8 7.4	2.2	2.2		3.2 2.5	10.3 5.9	2.2	2.2		3.2 2.8	4.6	2.9
125	1.2	2.7	2.7	10.8		2.7	2.7	5.4 3.1	9.9	2.2	2.2		3.2 2.5	14.0 6.2	2.2	2.2		3.2 2.8	7.4	3.5
155	1.5	2.7	2.7	12.8		3.0 2.5	3.2 2.5	6.6 3.6	11.1	2.2 2.5	2.2	2.5	5.4 2.8	16.0 7.6	2.2	2.2		3.7 2.8	7.9	4.1
185	1.8	4.8	4.8			3.0 2.5	3.2 2.5	8.8 6.5	14.8	2.7 2.5	2.7	2.5	5.9 3.0	8.0	2.2	2.2		4.2 2.8	8.8	5.8
225	2.2	4.8	4.8			3.0 2.5	3.2 2.5	10.8 5.9		2.7 2.5	2.7	2.5	3.4	10.8	2.7 2	.8 2.7	2.8	4.2 2.8	9.2	6.4
275	2.7	5.4	5.4			3.5 2.6	3.5 2.6	14.0 6.5		3.0 2.5			3.8	14.4		.8 2.7	2.8	6.9 2.8		
335	3.3	5.4	5.4			4 2.7	4 2.7	15 9.3		3 2.5			5.8	16			2.8		14.2	
395 475	3.9 4.7	8.1	8.1			6 3	6.2 3	10.2		3.5 2.5			9.6 6.4			.8 3.2			18.2	10.2
565	4.7 5.6	8.1	8.1			6.0 3.3		12.4		3.7 2.5			2.8 7.2			.8 3.2		11.2 5.6	-	13.4
685	6.8	10.8	10.8			7.0 5.2	7.2 5.2	13.6		6.0 2.8			6.0 7.6					12.6 6.3		15.8
825	8.2	12.8	12.8			8.0 5.4 11.0 6.0	8.2 5.4 11.2 6.0			6.0 3.2 7.2 3.8	9.0		10.6				2.8	13.0 7.4 16.8 8.4		
106	10					12.0 8.1				7.4 5.0			14.8				3.0	10.5		_
126	12						14.4 9.0			10.5 5.6			14.0				3.4	13.3		
156	15					12.0	12.0				12.5					6 10.		15.6		
186	18					13.2	13.2			14.8 8.8	15.0					8 13.				
226	22									10.2	1	0.2			14.8 6	4 15.0	6.4			
276	27									11.2	1	1.2			14.8 8	8 15.	8.8			
336	33									15.2	1	5.2			16.0 9	8 16.	9.8		\perp	
396	39											_			12	.0	12.0		1	
476	47											-			12	.0	12.0		+	
566	56											-				+			+	
686	68										-	+			-	+			+	
826	82											+				+			+	
107	100					<u> </u>				<u> </u>					<u> </u>					

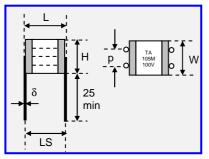
"X" series in green cells "T" series in blue cells

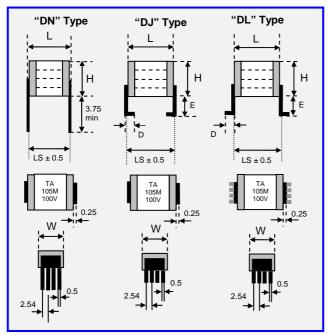
The thickness (Tmax in mm) for SC Series or the Height (Hmax in mm) for the SV Series is indicated in the cells.

Cr	SC04/SV04 (5550)							/SV 60)						SV	06/ (06/)80/	/SV	07			SC10 (45107)												
Code	(µF)	50V		100)V	20	0V	50	0V	50	ΟV	10	0V	20	0V	50	0V	50)V	10	0V	20	0V	50	0V	50	V	100	V	200V	50	VO
104	0.10																															
124	0.12																															
154	0.15		_																							_					-	
184	0.18		-							_								_								_	_		_		-	
224 274	0.22 0.27		-																								-		-		-	
334	0.27		\dashv					2.7		_						2.2	2.8									_	\dashv		-		+	
394	0.33		\dashv					2.7	2.8							2.2	2.8									\vdash	\dashv		\dashv		+	
474	0.39		\dashv					3.2		_						2.2	2.8										\dashv		\exists		+	
564	0.56							3.2						22		2.2	2.8															
684	0.68							3.2						2.2		2.7	2.8							3.2	2.8						2.7	
824	0.82					3.2		5.9	2.8					2.2		3.2	2.8							3.2	2.8					2.2	3.2	
105	1.0					3.2		6.4	3.0	2.2		2.2		2.2	2.8	3.2	2.8							3.2	2.8	2.2		2.2		2.2	3.2	
125	1.2					3.2	2.8	6.4	3.5	2.2		2.2		2.2	2.8	3.7	2.8							3.7	2.8	2.2		2.2		2.2	3.7	
155	1.5					3.2	2.8	9.6	3.8	2.2		2.2		2.7	2.8	4.2	3.2					3.2		4.2	2.8	2.2		2.2		2.7	6.4	
185	1.8	2.7	_	2.7		3.2	2.8	9.6	4.3	2.2		2.2		2.7	2.8	5.2	3.2					3.2		6.4	2.8	2.2		2.2		2.7	6.4	
225	2.2	2.7	_	2.7		5.9	2.8	9.6	6.5	2.2		2.2		2.7	2.8	6.9	3.5	_				3.2	2.8	6.9	2.8	2.2	_	2.2	_	2.7	6.4	
275	2.7	2.7		2.7		6.4	2.8		7.3	2.2			2.8		2.8	7.9						3.2	2.8		3.5	2.2	_	2.2	_	3.2	7.4	
335 395	3.3 3.9		2.8	2.7	2.8	6.4	3.0	14.8	8.1	2.2	2.8	2.2	2.8	3.2		8.4	4.5					3.2	2.8	10.1	4.1	2.2	_	2.2	_	3.2	9.6	
475	4.7		2.8	2.7	2.8	6.4		16.8	11.1	2.2	2.8	2.2		3.7		11.1		3.2		3.2		6.4	2.8	12.8	4.6	2.2		2.2		5.4	12.8	
565	5.6		2.8	3.2	2.8	9.6			11.4	2.2	2.8	2.2	2.8	5.4		12.6		3.2		3.2		6.4	2.8	14.8	6.3	2.2		2.2		5.9 6.4	14.8	
685	6.8		2.8 2.8	3.2		9.6	5.6		14.9 16.7	2.7	2.8	2.7	2.8	5.9 6.4		16.8		3.2	2.8	3.2	2.8	6.4	2.8 3.2	14.8	7.0 8.1	2.7		2.7		8.1	16.8	
825	8.2		2.8	3.7	2.8		6.4		16.7	2.7	2.8	3.2	2.8	0.4	4.0	20.8	12.0	3.2	2.8	3.2	2.8	9.6	3.8	16.8	9.8	3.2		3.2		9.6	10.8	
106	10		2.8	5.4	2.8	12.6				3.2	2.8	3.2	2.8	9.6			13.5	3.7	2.8	3.7	2.8	9.6	5.6		12.3	3.2		3.2		9.6		
126	12		3.0	6.4	3.0		9.9			3.7	2.8	3.7			6.6		17.5	3.7	2.8	3.7		12.8			15.1	3.7		3.7		12.8		
156	15		3.4	8.1	3.4		13.2			4.2	2.8		2.8		7.5			3.7	2.8	3.7		12.8			18.4	6.4		6.4		12.8		
186	18	7.7	5.6	10.8	5.6		14.4			6.4	2.8	6.4	2.8		10.1			3.7	2.8	3.7	2.8	16.0	8.8			6.4		6.4		16.8		
226	22	8.0	5.8	12.8	5.8					6.4	3.2	6.4	3.2		11.0			6.4	3.0	7.4	3.0		9.2			9.6		9.6				
276	27	11.7	5.2	12.8	6.2					7.9	3.8	9.6	3.8		14.0			6.4	3.5	8.2	3.5		12.8			9.6		9.6			1	
336	33	12.0	3.6	14.8	8.6					8.4	5.6	9.6	5.6		16.0			7.1	5.6	10.5	5.6		15.2			12.8	_	12.8			-	
396	39	16.0	9.4	16.8		_				11.6		12.8				-		9.6	5.8	11.2		_		-		12.8	_	12.8	_		+	
476	47		2.0		12.0					12.6		12.8						9.6	6.5	11.8				-		16.0		16.0	-		+	
566	56	1	3.6		13.6					16.8		17.0						11.6	8.8	12.0						<u> </u>	-		-		+	
686 826	68 82		\dashv			-				<u> </u>	9.6		9.6			-		14.8		15.0				-		<u> </u>	\dashv		-		+	
107	100		-								12.8		12.8						11.8		11.8										1	
107	100									<u> </u>	14.6		14.6					<u> </u>	13.5		13.5											

"X" series in green cells "T" series in blue cells

The thickness (Tmax in mm) for SC Series or the Height (Hmax in mm) for the SV Series is indicated in the cells.




VI-3 Dimensions

SC Series

4 wires « W4 » terminations

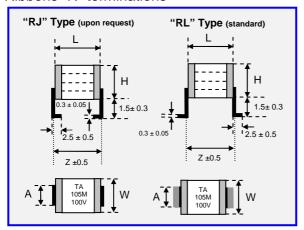
Dual In Line « DIL » termination

Note: the marking shown here is just given as an example

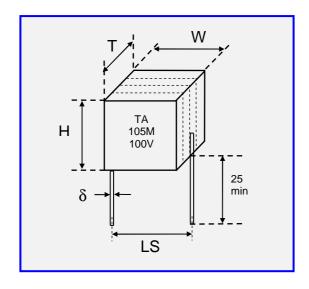
All dimensions in mm

Size	L	W	LS	р	δ	Н	
	max	max	± 0,5	± 0,5	± 12%	max	
SC02	11,9	11,4	10,20	7,62	0,6		
SC03	17,0	12,0	15,24	10,16	0,9	Please,	
SC04	16,5	14,0	15,24	10,16	0,9	consult the tables of	
SC05	20,0	16,6	17,80	10,16	0,9	capacitance range	
SC06	17,8	21,6	15,24	10,16	0,9		
SC07	22,7	16,6	20,32	10,16	0,9		

All dimensions in mm


Size	L	W	LS	E	D	Nb	Н	
	max	max	± 0,5*	± 0,3	± 0,5	pins**	max	
SC00	7,4	8,5	6,35	2,0	2,0	3		
SC01	10,2	9,6	7,62	1,5	2,5	3		
SC02	11,9	11,4	10,16	1,5	2,5	4		
SC03	15,5	11,5	14,00	1,5	2,5	4	Please, consult the	
SC04	16,5	14,0	13,70	1,5	2,5	5	tables of capacitance	
SC05	18,5	17,0	17,78	1,5	2,5	6	range	
SC06	17,8	21,6	15,24	1,5	2,5	7		
SC07	22,7	16,6	20,32	1,5	2,5	6		
SC10	13,2	27,5	11,50	2,1	2,6	10		

* Except for the SC07, tolerance = \pm 0.8 mm
* * Number de pins per side


Ribbons "R" terminations

All dimensions in mm									
Size	L W		Α	Н					
	max	max	± 0,2	max					
SC01	10,2	9,6	8,0						
SC02	11,9	11,4	8,0						
SC03	15,5	11,5	8,0	Please, consult the					
SC04	16,5	14,0	8,0	tables of capacitance					
SC05	18,5	17,0	15,0	range					
SC06	17,8	21,6	15,0						
SC07	22,7	16,6	15,0						

Note: the marking shown here is just given as an example. For the 'RJ' version, please consult us.

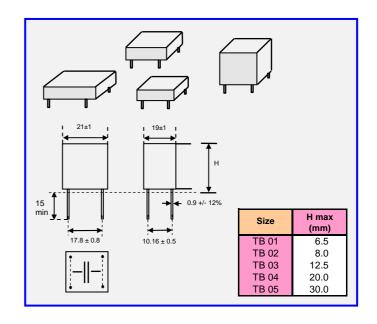
SV Series

All dimensions in mm

Size	W max	H max	LS ±0.5	δ ±12%	T max	
SV01	10,2	9,6	10,16	0,6		
SV02	11,9	11,4	10,16	0,6		
SV03	17,0	12,0	15,24	0,9	Please, consult	
SV04	16,5	14,0	15,24	0,9	the tables of capacitance range	
SV05	20,0	16,6	17,80	0,9	range	
SV06	17,8	21,6	15,24	0,9		
SV07	22,7	16,6	20,32	0,9		

VI-4 Marking

Size	Marking codes	Example
All sizes	« TA » logo Cap Code + Tolerance Code Rated voltage value	TA 105M 100V


VII "TB" Series

VII-1 Features

This series features have the same electrical parameters than the "SC" series with only 4 wires variants, the capacitor being molded in a plastic housing making it perfectly impervious to all external agents.

VII-2 Capacitance range and dimensions

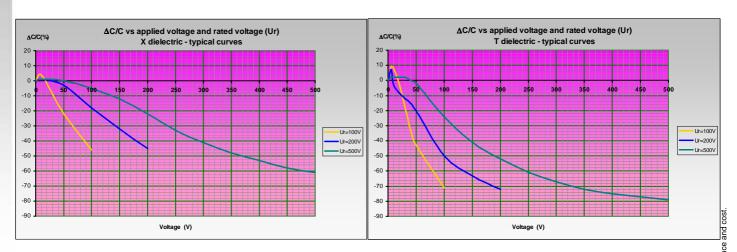
Cr	Cr		TB S	eries	
Code	(µF)	63V	100V	250V	400V
684	0.68			TB01	TB01
824	0.82			TB01	TB01
105	1.0			TB01	TB01
125	1.2			TB01	TB01
155	1.5			TB01	TB02
185	1.8			TB01	TB02
225	2.2		TB01	TB01	TB03
275	2.7		TB01	TB01	TB03
335	3.3		TB01	TB01	TB03
395	3.9		TB01	TB02	TB03
475	4.7		TB01	TB02	TB04
565	5.6	TB01	TB01	TB02	TB04
685	6.8	TB01	TB01	TB03	TB04
825	8.2	TB01	TB01	TB03	
106	10	TB01	TB01	TB03	
126	12	TB01	TB01	TB03	
156	15	TB01	TB01		
186	18	TB02	TB02		
226	22	TB02	TB02		
276	27	TB03	TB03		
336	33	TB03	TB03		
396	39	TB04	TB04		
476	47	TB04	TB04		
566	56	TB04	TB04		
686	68	TB05			
826	82	TB05			

"X" series in green cells

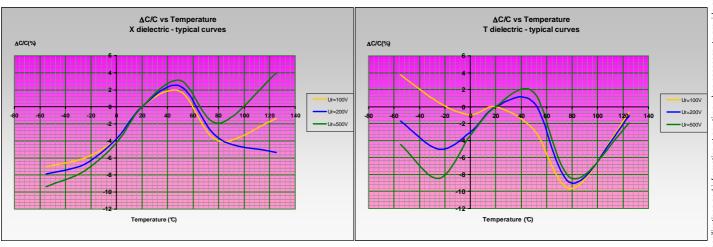
VII-3 Marking

Size	Marking codes	Example		
All sizes	« TA » logo Cap Code + Tolerance Code Rated voltage value	TA 105M 100V		

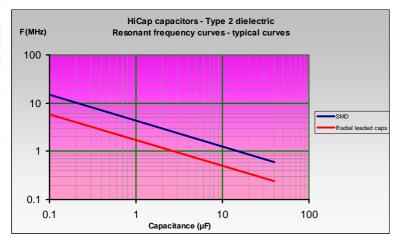
The marking is applied on the top of the TB capacitors

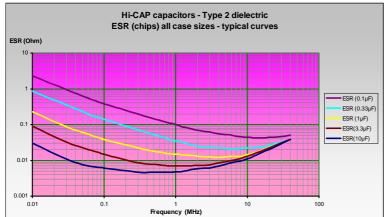

VII Dielectric characteristics

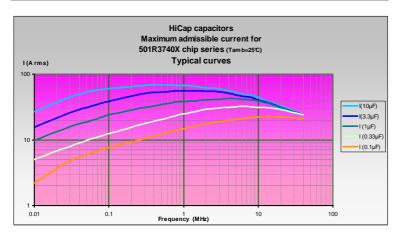
Description	"X" Series (class 2)	"T" Series (class 2)		
CECC	2R1	2R1		
EIA	X7R	X7R		
Temex Ceramics Code	Х	Т		
Operating temperature range	-55℃ / +125℃	-55℃ / +125℃		
Storage temperature range	-55℃ / +125℃	-55℃ / +125℃		
Maximun ∆C/C over Temperature range without voltage applied	± 15%	± 15%		
Ageing	≤2.5% per decade hour	≤2.5% per decade hour		
Dissipation Factor (D.F.)	≤ 2.5%	≤ 2.5%		
Voltage proof	All Series except TB Ur ≤ 200V: 2.5 x Ur Ur > 200V: 2.0 x Ur TB Series Ur ≥ 50V: 2.0 x Ur	Ur ≤ 200V : 2.5 x Ur Ur > 200V : 2.0 x Ur		
Insulation Resistance (IR) @ 25℃ (Under Ur)	100GΩ or 1000Ω.F*	100GΩ or 1000Ω.F*		
Insulation Resistance (IR) @ 125℃ (Under Ur)	10GΩ or 100Ω.F*	10GΩ or 100Ω.F*		
Measurement Conditions for C and D.F. @ 20℃	≤ 100pF: 1MHz / 1Vrms (no bias) > 100pF: 1KHz / 1Vrms (no bias)	≤ 100pF: 1MHz / 1Vrms (no bias) > 100pF: 1KHz / 1Vrms (no bias)		
Capacitance versus applied Voltage and Temperature	Cf the following page	Cf the following page		


(*): whichever is the less.

Curves of capacitance behaviour versus applied voltage @25℃ (for all sizes)




Curves of capacitance behaviour versus temperature (for all sizes), without voltage



V Electrical characteristics

The ESR (Equivalent Serial Resistance) curves are given here for SMD (chips) capacitors. Regarding the curves for the leaded capacitors, they are rather the same.

Indeed, due to the resistivity of the raw material used and the wire diameters, the resistance of the wires is much lower than the ESR of the chips. So, in a first approach, their influence can be considered as negligible.

These typical curves are an example of admissible currents for one family of chip capacitors. For other curves and products or for further information, please contact us.

Note: for the calculations, we have considered that the terminations are directly connected to an infinite heat sink. In other words, the thermal resistance of the circuit itself which depends of its type and design has not been taken into account. Moreover, the ambient temperature taken is 25°C.

VII Termination types

Description	P (RoHS)	T (non RoHS)	R / W2 / W4 (RoHS)	R / W2 / W4 (non RoHS)	DIL (RoHS)	DIL (non RoHS)
Chip (SMD)	✓	✓		-	-	-
Leaded caps	-	-	✓	✓	✓	✓
Materials	All sizes: Ag 100%	P termination with SnPbAg solder dipping	100% tinned Copper	Sn(70%) Pb(30%) plated Copper	100% tinned phosphor bronze	Sn(60%) Pb(40%) plated phosphor bronze
Magnetic status	Non magnetic	Non magnetic	Non magnetic	Non magnetic	Non magnetic	Non magnetic
Lead status (% of Pb)	0%	36%	0%	30% of the plated layer	0%	40% of the plated layer

VIII Special products


As standard products can't meet all the specificities of all applications, special applications may require special features (higher voltage, burn-in, dimensions, coating, leading, marking...) not described in this catalogue.

Based on the "state of the Art", and our knowledge of the technology, our Engineers may study at your request all special components to meet your application. Please, consult us for more information.

IX How to order

(**): For leaded capacitors, both RoHS and non-RoHS versions exist. This is due to the wishes of some customers who still need non-RoHS components in their applications. This suffix must be required for RoHS compliancy.

For "P" terminations, only the RoHS version exists. The RoHS suffix can be added for information.

X Packaging

"Blister" Boxes (SMD and leaded components):

For all products, special "blister" boxes are used to optimise the protection of the parts during the carriage and the storage. Depending upon the termination (with or without connection) and the size, the number of the parts in each box is defined. Please, consult us for more details.